

Architekturen betrieblicher Anwendungssysteme

Frameworks des Architekturmanagements

Lehrstuhl für Wirtschaftsinformatik Prozesse und Systeme

Universität Potsdam

Chair of Business Informatics Processes and Systems

University of Potsdam

Univ.-Prof. Dr.-Ing. habil. Norbert Gronau *Lehrstuhlinhaber* | *Chairholder*

Mail August-Bebel-Str. 89 | 14482 Potsdam | GermanyVisitors Digitalvilla am Hedy-Lamarr-Platz, 14482 Potsdam

Tel +49 331 977 3322

E-Mail ngronau@lswi.de

Web Iswi.de

Lernziele

- Welche Elemente besitzen Enterprise Architecture Frameworks?
- Was sind Merkmale vom Rahmenwerken zur Strukturierung einer Enterprise Architecture?
- Was sind Vor- und Nachteile von Rahmenwerken?
- Wie unterscheiden sich die Frameworks Zachmann und TOGAF untereinander?
- Wozu dienen Governenace-Frameworks?

QuizApp

Einwahldaten

URL: https://quiz.lswi.de/login

Lecture Code: aba19

Das RAIL-Modell

Unternehmensarchitektur Frameworks

Ausgewählte Unternehmensarchitektur Frameworks

Vergleich von Unternehmensarchitektur Frameworks

Enterprise Architektur Rollen

Ausblick Governance Frameworks

RAIL - das Vorgehensmodell aus Potsdam

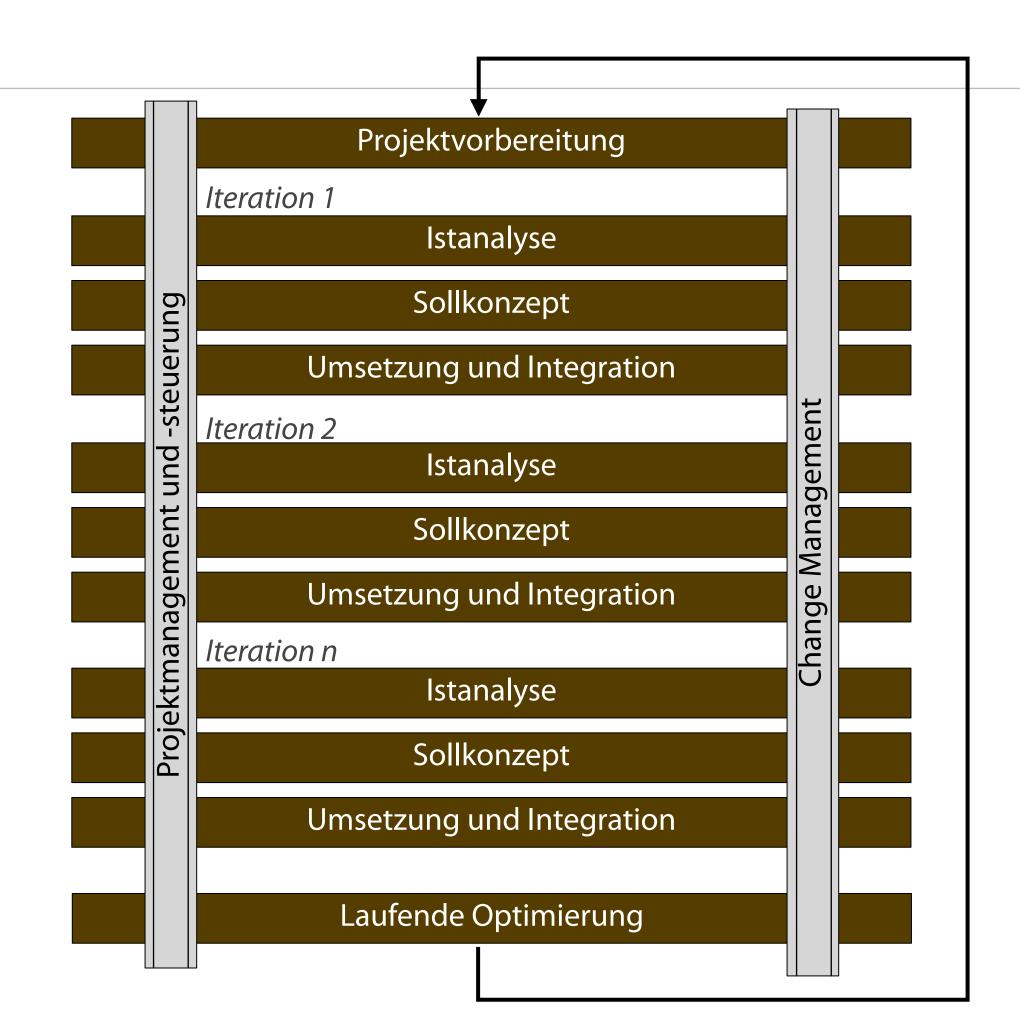
R - Robust

• Für vielfältige Aufgabenbereiche einsetzbar

A - Anpassbar

 An unterschiedliche Gegebenheiten, Unternehmensgrößen

I - Integrativ


 Betrachtet Menschen, Organisation und Technik (IT) gleichmäßig und integrierend

L - Lasttauglich

Kann für große Aufgaben eingesetzt werden

Überblick über RAIL

Phasen der Ist-Analyse Erhebung und Untersuchung des gegenwärtigen Zustands

IST-Aufnahme	← Geignete Methode	Interviews, Fragebögen, Fokusgruppen, Beobachtung
Erfassung des Ist-Zustandes	← Geeignete Datenquellen	Inventur, Auto-ID, Process Mining
IST-Dokumentation	← Geeignete Modelle	UML
D . II ICT 7	← Geeignete	MADI DDAANI
Darstellung des IST-Zustandes	Werkzeugunterstützung	KMDL, BPMN
Potentialanalyse	Werkzeugunterstützung Geeignete Analyse- und Bewertungsmethoden	Benchmarking, Wertstromanalyse, Rol

Das RAIL-Modell

Unternehmensarchitektur Frameworks

Ausgewählte Unternehmensarchitektur Frameworks

Vergleich von Unternehmensarchitektur Frameworks

Enterprise Architektur Rollen

Ausblick Governance Frameworks

Ausgewählte Definitionen zu Frameworks

Chief Information Officers Council 1999

"Framework is a logical structure for classifying and organizing complex information"

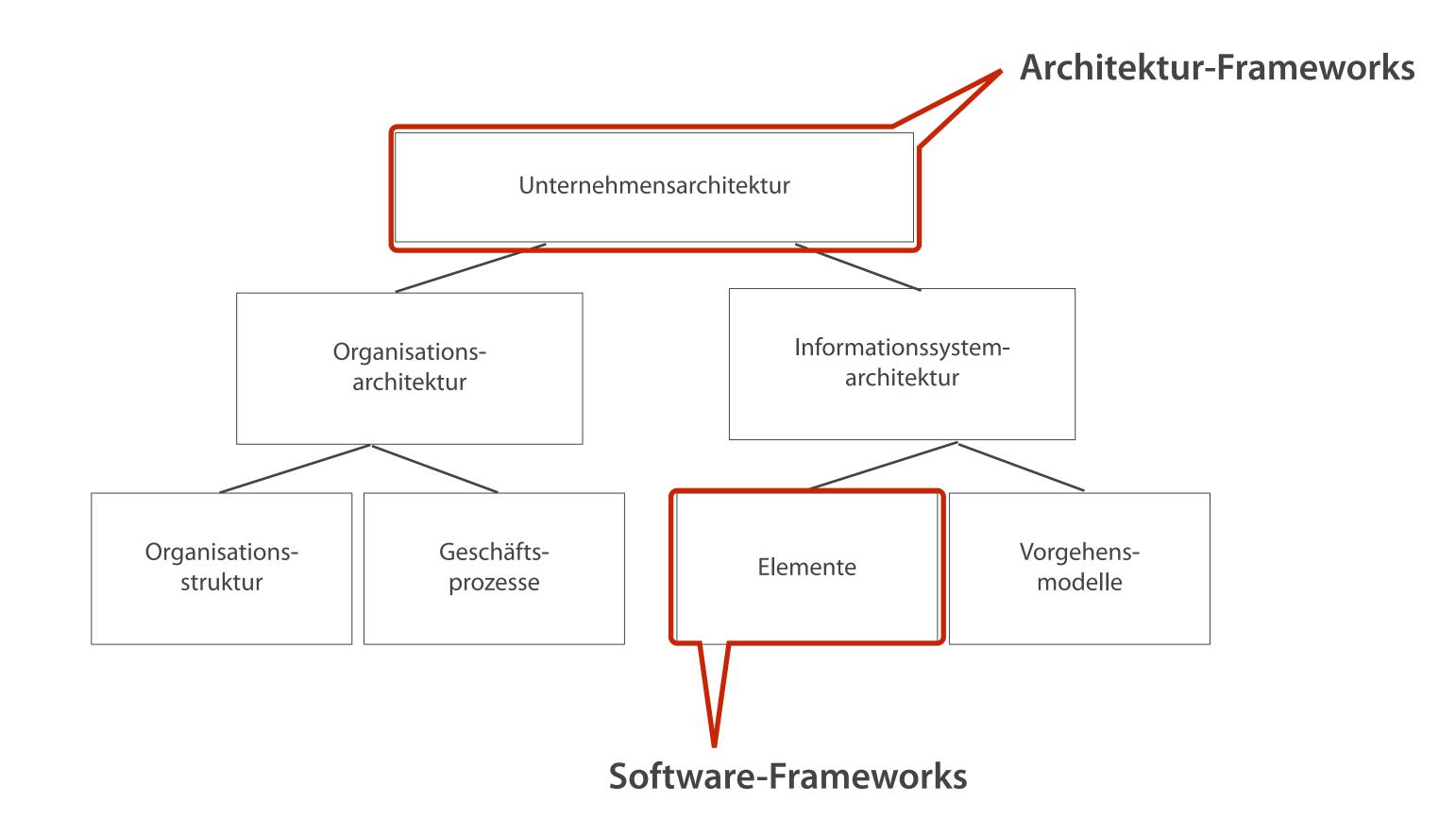
U.S. Department of Defense

A framework "provides the guidance and rules for developing, representing, and understanding architectures."

The Open Group:

A Framework "is a tool which can be **used for developing a broad range of different architectures**. It **describes a method for designing** an information system in terms of a set of building blocks, and for showing how the building blocks fit together. It contains a **set of tools** and provides **a common vocabulary**. It also includes a list of recommended standards and compliant products that can be used to implement the building blocks."

Ein Framework ist eine Mischung aus Ordnungssystem und Bibliothek.


Frameworks in Kontext Architekturmanagement

Hanschke:

Im EAM Framework werden die für EAM relevanten Stakeholder, deren **Ziele und Fragestellungen** sowie die für die Beantwortung der Fragestellungen erforderlichen fachlichen und technischen **Strukturen** sowie **Visualisierungen, Listen und Steuerungssichten beschrieben**.

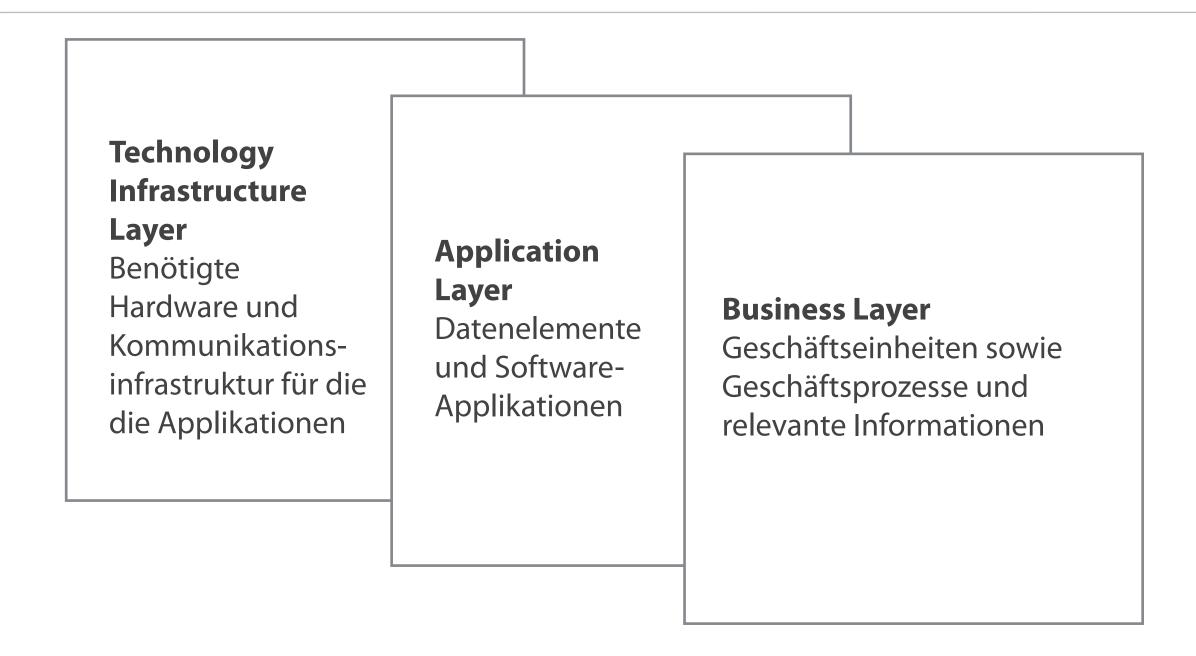
Die Grundabsichten eines (EA-) Rahmenwerkes sind es eine Strukturierung der Informationslandschaft vorzunehmen und die Komplexität zu reduzieren.

Unterscheidung zwischen Architektur- und Software-Frameworks

Methodisches Vorgehen durch Rahmenwerke

- Rahmenwerke stellen Methodiken und Werkzeuge bereit, die fortwährende Architekturenentwicklung unterstützen
- für Analyse, Entwurf, Implementierung und kontinuierliches Change Management
- Durch Vorgehens- und Architektur-Referenzmodelle bieten sie Techniken zur Herstellung von Integration und führen Vorgehensweisen für Projekte im Informationsmanagement an
- Die Kombination von Rahmenwerken mit anderen Standards oder Werken ist gewinnbringend
- Unterstützung bei der Modellierung der Informationssysteme finden die Rahmenwerke in den Modellierungsmethoden bzw. -sprachen (ereignisgesteuerte Prozessketten - EPK, Unified Modeling Language - UML, usw.)

Entwicklung der Frameworks


Inhaltlich

- Erkenntnis der systematischen Aufbereitung von Informationswegen
- Einführung von unterschiedlichen Perspektiven
- Einige Frameworks nicht entwickelt, sondern
 Entstehung aufgrund praktischer Anwendung

Ausgewählte Frameworks

- Zachman, 1987
- TOGAF, 1995
- Gartner, 2005
- Federal Enterprise Architecture (FEA), 2006

Strukturierung und Schichten der Enterprise Architecture

Durch die hierarchischen Schichten bietet die EA-Frameworks einen holistischen Blick auf die Unternehmensarchitektur.

Eigenschaften von Schichten/ Aspekte

Strukturelle Aspekte

 Unterteilen der verschiedenen Einheiten eines Unternehmens in Subeinheiten

Verhaltensaspekte

 Zeigen des Verhaltens, welches sich durch manifestierte Aktivitäten und Prozesse äußert, um die benötigten Services zu produzieren

Informative Aspekte

 Austausch von Informationen, um bestimmte Geschäftstätigkeiten auszuführen

Jede Schicht besteht aus verschiedenen Bereichen/ Domänen, die informative, Verhaltens- und strukturelle Aspekte widerspiegeln.

Elemente/ Bausteine von EA Frameworks

Hauptaufgaben

- Instrumente der Dokumentation und Komponentenspezifikation
- Erleichterung der Unternehmensplanung und des Problemlösens

EA Frameworks beschreiben eine Methode, um Informationssysteme zu designen. Die Beschreibung geschieht durch "Bausteine" und erläutert ebenfalls, wie diese zusammenpassen.

Empfehlung von Standards Verwendung generischer Konzepte und somit Unabhängigkeit der verwendeten Sprache

Einheitliche Terminologie Verwendung von zusammenspielenden Produkten

Merkmale für die Systematisierung und Gruppierung von Frameworks

Merkmale von Rahmenwerken

- Definition von verbindlichen Merkmalen erforderlich
- Individuelle Merkmale sind additiv möglich bspw. Wirtschaftlichkeit, Kosten für die Umsetzung und Durchsetzbarkeit
- Beispiel: Das Merkmal "Grad der Praxis-Übertragbarkeit" eines Rahmenwerkes könnte anhand einer "Norm-Architektur" geprüft werden
- "Norm- Architektur" nicht mehr allgemeingültig, bzw. wenig aussagefähig (Individualität der Branche unbeachtet)

Merkmale für die Systematisierung und Gruppierung von Frameworks

Im allgemeinen Interesse

- Name des Rahmenwerkes
- Entwickler des Rahmenwerkes
- Sprache der Rahmenwerksbeschreibung
- Nationalität
- Nutzen
- Historie, Versionsverlauf und Vererbung
- Literatur
- Marktanteil

Interesse des Informationsmanagers

- Abbildung der Geschäftsprozesse
- Art der Komplexitätsreduktion (Sichtweisen, Ebenentrennung, Ebenenbeziehung)
- Berücksichtigung von Anwendungssystemen
- Berücksichtigung physischer IS-Komponenten

Im speziellen Interesse

- Art des Rahmenwerkes (inhaltliche Ausrichtung: konzeptuelle und operationelle Konzepte [MA05, S. 19])
- Orientierung
- Metamodell
- Stakeholder & treibende Kräfte
- IT-Planung
- Zertifizierung

Im Interesse der Umsetzung

- Verfügbarkeit
- Anschaffungskosten
- Methodik
- Referenzmodelle vorhanden
- Unterstützende Tools
- Supportquellen

Quelle: Mattes 2011, S. 19-36

Frameworks

Tooleinteilung

Enterprise Architecture Frameworks

Komponenten-Spezifizierungstool

Architektur Schichten Architektur Modelle

Architektur Domains Architektur Artefakt Planungs- und Problemlösungstool

Basis-Architektur Architektur Roadmap

Ziel-Architektur

Transition Plan

Zielgruppe eines Rahmenwerks

Government and Authoritative Frameworks

- Entwicklung zur Unterstützung öffentl. Einrichtungen und des Militärs
- ursprünglich wurden diese geschaffen zur Entwicklung einer Standardarchitektur zur Unterstützung von Integration und Interoperation
- Möglichkeit zu multinationalen Militäroperationen

Miscellaneous Frameworks

- Alle anderen Frameworks
- Bspw. für Aufgaben aus der Industrie

Vendor-Specific Frameworks

- Entwickelt von (Software-)Herstellern
- Widerspiegelung von Unternehmenserfahrung mit großen Projekten in Form von Vorgehens-/ Referenzmodellen oder Standardansätzen für Produkte

Weitere Frameworks

- Government und Agency Frameworks
- Management Frameworks
- Military Frameworks
- Manufacturing-Specific Frameworks
- Technically oriented Frameworks
- Interoperability Frameworks
- Add-On Frameworks

Grundidee: Vergleichbarkeit von Rahmenwerken anhand einheitlicher Merkmale

Frameworks Pro und Contra

Vorteile

- Unterstützung definierter Ziele
- Komplexität beherrschen
- Flexibilität und Versatilität
- Entscheidungshilfe leisten
- Standardisierung gewährleisten
- Integration unterstützen
- Interoperability
- Ganzheitlichkeit
- Strukturierung
- Datenmanagement unterstützen
- Geschäftsprozesse mit der IT-Infrastruktur verbinden
- Geschäftsprozesse optimieren
- Sicherheit erhöhen
- Unterstützung bei der Mitarbeiterausbildung

Nachteile

- Investitionsaufwand
- Treibende Kräfte erforderlich
- Sind Komplex und abstrakt und liefern keine direkten ad hoc Lösungen
- Erfolgsfaktor: Erfahrung, da Rahmenwerke sehr komplex sind und es zu Schwierigkeiten in der Praxisanwendung kommt
- Erst Erfahrungen ermöglichen ein effizienteres Arbeiten und Reduktion der Projektrisiken

Das RAIL-Modell

Unternehmensarchitektur Frameworks

Ausgewählte Unternehmensarchitektur Frameworks

Vergleich von Unternehmensarchitektur Frameworks

Enterprise Architektur Rollen

Ausblick Governance Frameworks

Das Zachman-Framework

Grundlegendes

- Erstellt 1987 von John Zachman
- Metamodell zur Entwicklung und Beschreibung von Informationssystemen in Unternehmen
- Klassifikation der Organisation eines Unternehmens
- Modellierung von Funktionen, Elementen und Prozessen
- Prozesse nicht Schritt für Schritt, sondern aus Perspektive der Rollen organisiert

"If the computer is to do anything useful, the concrete things in the world must be related to the abstract bits in the computer. Zachman's framework for information systems architecture (ISA) makes that link."

(Sowa und Zachmann, 1992, S. 590)

Erstes EA Framework, sehr komplex aber gut geeignet, um einen begrifflichen Ordnungsrahmen zu erstellen.

Das Zachman-Framework

	What?	How?	Where?	When?	Who?	Why?	
	Data	Function	Network	Time	People	Motivation	
Scope	List of Entities	List of Processes	List of Locations	List of Events	List of Organizations / Agents	List of Goals/ Strategy	Planner
Enterprise Model	Entity Relationship Model	Process Flow Diagram	Logistics Network	Master Schedule	Organization Chart	Business Plan	Owner
System Model	Data Model	Data Flow Diagram	Distributed System Architecture	Processing Structure	Human Interface Architecture	Knowledge	Designer
Technology Model	Data Design	Structure Chart	System Architecture	Control Structure	Human/ Technology Interface	Knowledge Design	Builder
Components	Data Schemata	Program	Network Architecture	Timing Definition	Security Architecture	Knowledge Definition	Subcontractor
Functioning System	Database	Function	Network	Schedule	Organisation	Strategy	User
	Software Arch	itecture	System Ar	chitecture	Arch	rprise itecture/ IS itecture	

Quelle: Sowa und Zachman 1992, S. 602; Matthes 2011, S. 13

Das Zachman-Framework - Bestandteile

Ebenen

- Scope: Anwendungsbereich, die grundsätzliche Funktionalität und die Kosten eines IS.
- Enterprise Model: Geschäftsobjekte und ihre Interaktion mit den Geschäftsprozessen
- System Model: Systemmodelle als Grundlage für die Geschäftsmodelle
- Technology Model: Verfeinerung der Systemmodelle auf Basis einer Technologie oder Entwicklungsplattform
- Components: Umsetzung der Technologie mittels Programmiersprachen, Datenschemata usw.
- Functioning System: Arbeitsmedium (Daten, Module, Zeitpläne, usw.)

Perspektiven

- Planner
- Owner
- Designer
- Builder
- Subcontractor
- User

Dimensionen

- what
- how
- where
- who
- when
- why

TOGAF (The Open Group Architecture)

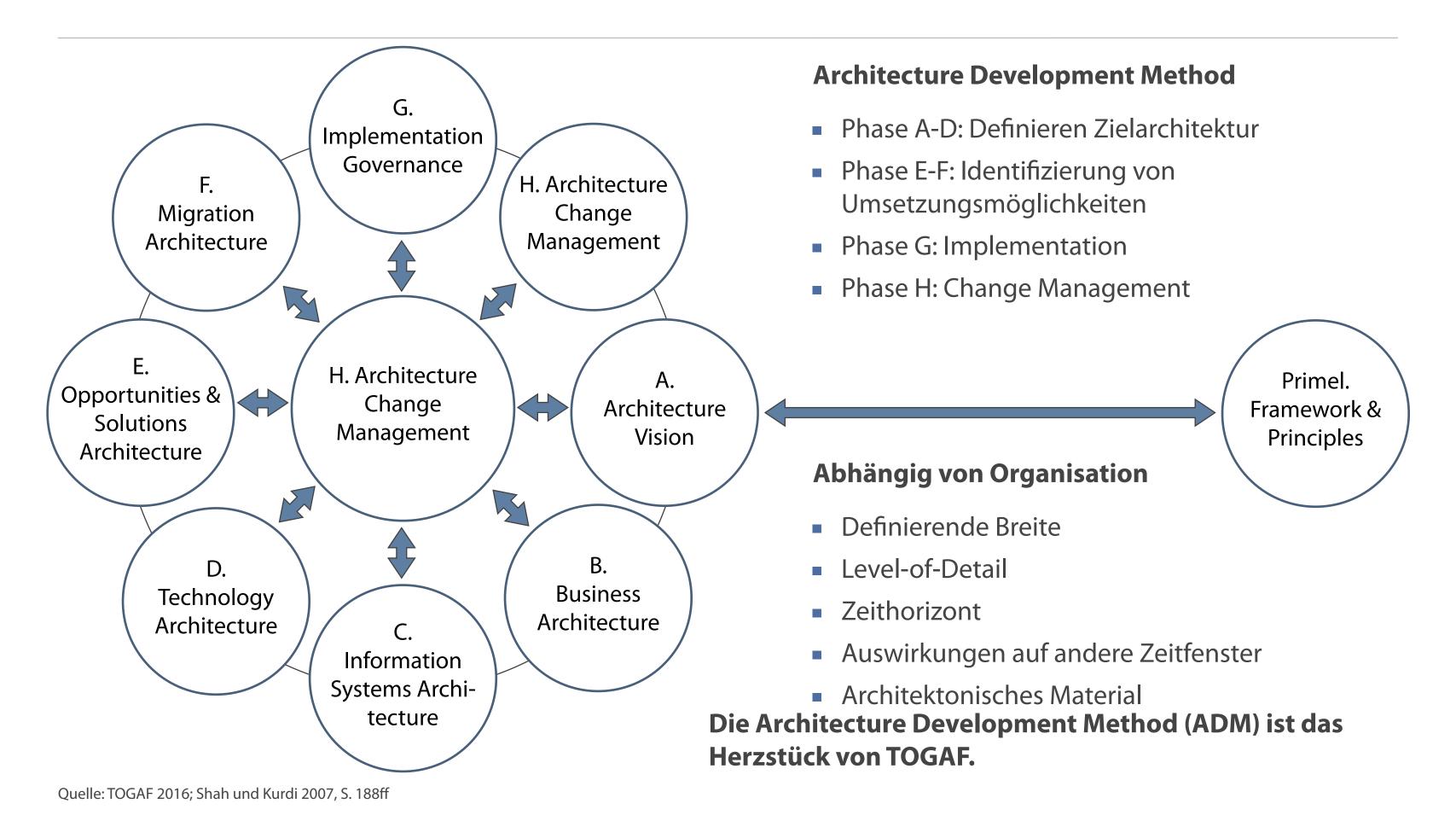
Historie

- IT-Konsortium aus Endanwendern, Dienstleistern, Beratungsunternehmen und Bildungsträgern
- 1996 Zusammenschluss Open Software Foundation und X/ Open zur Open Group
- Oberste Prämisse: Standards, insb. für UNIX-Betriebssysteme
- Version 1, 1995
- Version 10, 2022
- kontinuierlich weiterentwickelt

Inhalt

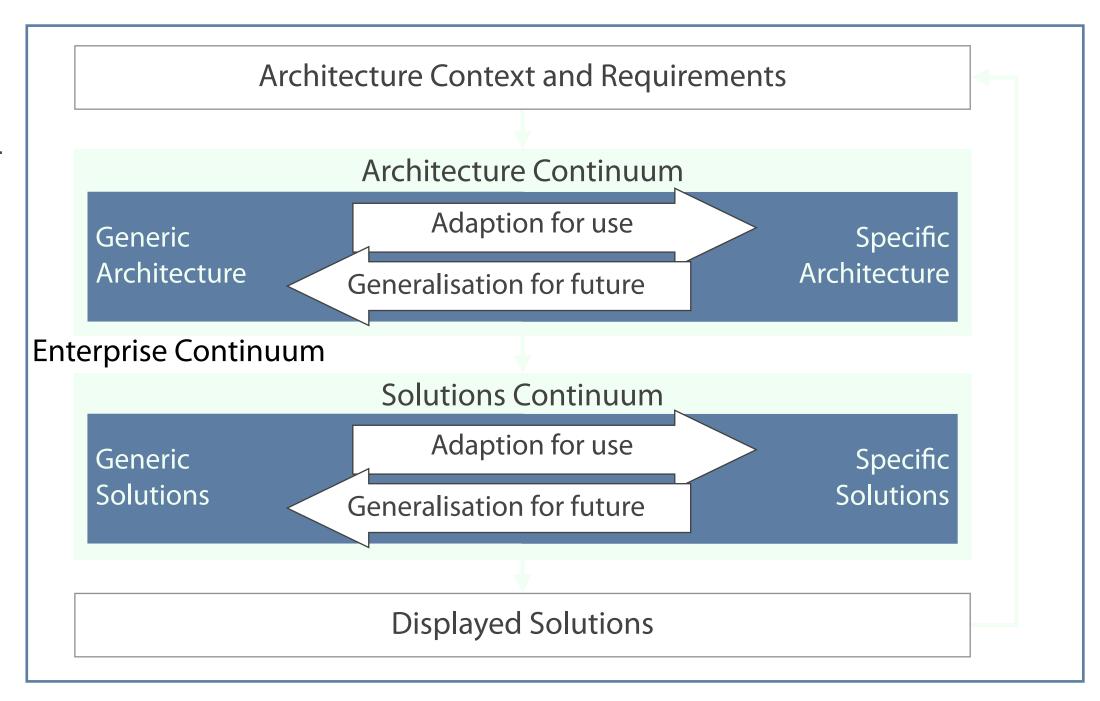
- Best Practice aus über 300
 Unternehmen
- Erforderlichen Methoden, um eine EA sowie EAM im Unternehmen zu etablieren
- TOGAF Technical Reference Model (TRM)
- Integrated Information
 Infrastructure Reference Model (III-RM)
- Beinhaltet seid Version 10 agile
 Anpassungen ja nach
 Unternehmen angepasst
- Empfehlungen für Reifegradmodelle, um die Entwicklung einer EA zu unterstützen.

Verfügbarkeit


- nach Registrierung als Download (www.opengroup.org)
- Zertifizierte TOGAF- Dienstleister und TOGAF-Beratungsunternehmen bieten Support

Die sieben Hauptteile von TOGAF

Part	Description	
I: Einleitung	High Level Einleitung zu EA und TOGAF Ansatz	
II: Architecture Development Method (ADM)	Dies ist das Herzstück von TOGAF zur Entwicklung einer EA: 9 Phasen	
III: Architecture Content Framework	Metamodell für Architekturartefakte	
IV: ADM Guidelines & Techniques	Zusammenstellung von Guidelines und Techniken zur Entwicklung des ADM	
V: Enterprise Continuum & Tools	Tools zum Kategorisieren und Speichern der Ergebnisse einer EA	
VI: TOGAF Reference Model	Referenzmodelle: TOGAF Technical Reference Model und Integrated Information Infrastructure Reference Model	
VII: Architecture Capability Framework	Diskussion der Organisation, Prozessen, usw. zur Entw. einer EA	


Quelle: TOGAF 2016, S.21-22; Matthes 2011, S. 188ff

TOGAF ADM

TOGAF Enterprise Continuum

- Sammlung von
 Architekturbeschreibungen,
 Referenzmodellen und Mustern zur
 Wiederverwendung
- Enterprise Continuum (EC): äußeres Kontinuum zur Klassifikation von Lösungen
- Architectural Continuum (AC):
 Definition und Verständnis von allgemeinen Regeln, Darstellungen und Beziehungen in einer Architektur
- Solutions Continuum (SC): zur
 Spezifikation und Konstruktion der
 Architekturen aus dem AC

Quelle: Matthes 2011, S. 195f

Das RAIL-Modell

Unternehmensarchitektur Frameworks

Ausgewählte Unternehmensarchitektur Frameworks

Vergleich von Unternehmensarchitektur Frameworks

Enterprise Architektur Rollen

Ausblick Governance Frameworks

Vergleich der Frameworks

Kriterium	Zachman	TOGAF	
Klasse des Rahmenwerks	Management Framework		
Charakter	konzeptuell	operationell	
Orientierung	Gesamtarchitektur		
Jahr der aktuellen Version	2011 (V3.0)	2018 (V9.2)	
Sprache	Englisch		
Verfügbarkeit	Ja		
Kosten	0 bis >0		

Vergleich der Frameworks

Kriterium	Zachman	TOGAF
Dokumentationsumfang (A4- Seiten)	27 - 500	787
Zertifizierungen	Ja	erfüllt ISO/IEC 42010
Stakeholder- berücksichtigung	Nein	Ja
Abbildung der Geschäftsprozesse	Ja	Ja
Berücksichtigung von Entitäten	Ja	Ja
Anzahl an Sichtweisen	6	1
Anzahl der berücksichtigten Ebenen	6	>3

Vergleich der Frameworks

Kriterium	Zachman	TOGAF
Ebenenbeziehung	Ja	Ja
Berücksichtigung rechnerbasierter Anwendungssysteme	Ja	Ja
Berücksichtigung konventioneller Anwendungssysteme	Ja	Ja
Kommunikationsbeziehungen zw. Anwendungssystemen	Ja	Ja
Berücksichtigung rechnerbasierter IS-Komponenten	Ja	Nein
Berücksichtigung konventioneller IS-Komponenten	Nein	Nein

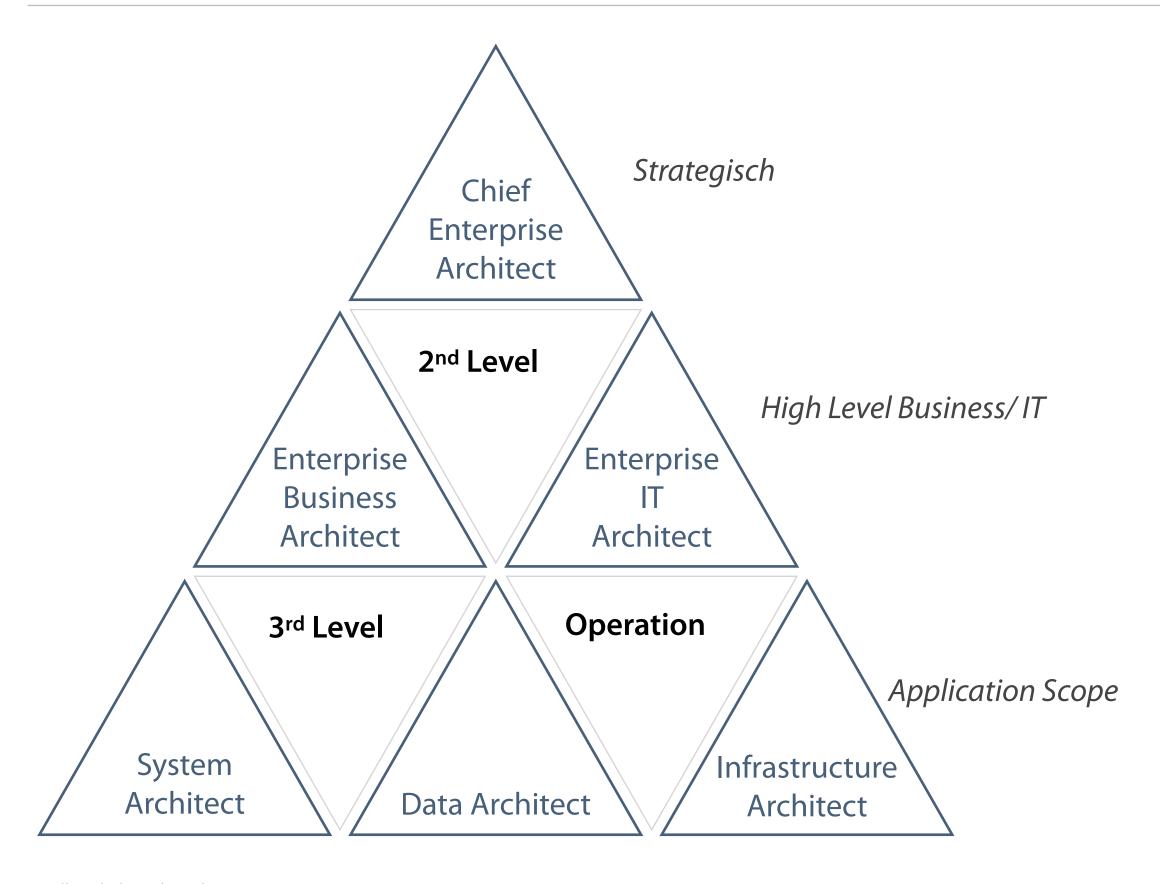
- Rechnerbasierte Anwendungssysteme basieren auf Softwareprodukten, welche abgeschlossene, erworbene oder eigenentwickelte Programme darstellen, die auf einem Rechnersystem installiert sind.
- Konventionelle Anwendungssysteme basieren auf Organisationsplänen, welche von Menschen umgesetzt werden und beschreiben, wer in welcher Reihenfolge welche konventionellen Werkzeuge zur Erledigung einer Aufgabe einzusetzen hat

Weitere Vergleichsaspekte

Kriterium	Zachman	TOGAF	
Berücksichtigung des Menschen als IS-Komponente zur DV	Ja	Nein	
Vorgehens- Referenzmodell vorhanden	Nein	Ja	
Architektur- Referenzmodell vorhanden	Ja	Ja	
Tool(s) verfügbar	Casewise Corporate Modeler, EA Webmodeler, Enterprise Framework, Mèga, Metis Product Family, Provision Modeling Suite, Select Enterprise, System Architect Family	Avolution ABACUS, BIZZdesign Enterprise Studio, ARIS IT Architect, Planview Troux, Sparx Enterprise Architect, Alfabet, Orbus IT- Transformation Suite, HOPEX EA Suite, ADOIT	
Support verfügbar	Ja	Ja	

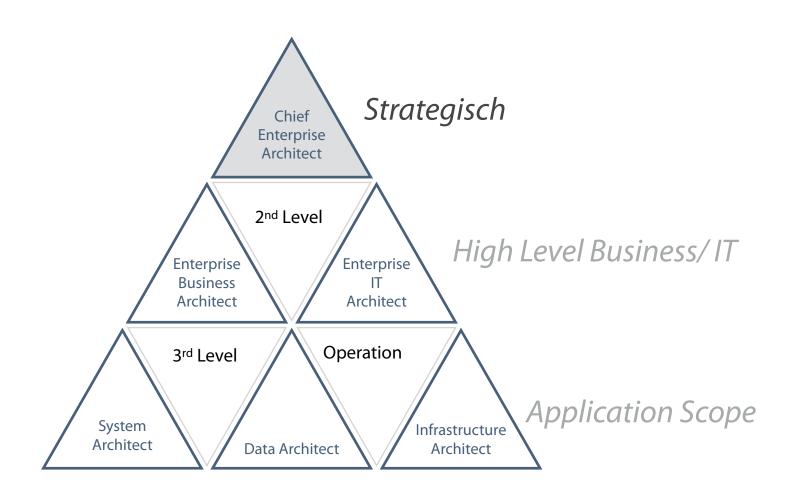
Das RAIL-Modell

Unternehmensarchitektur Frameworks

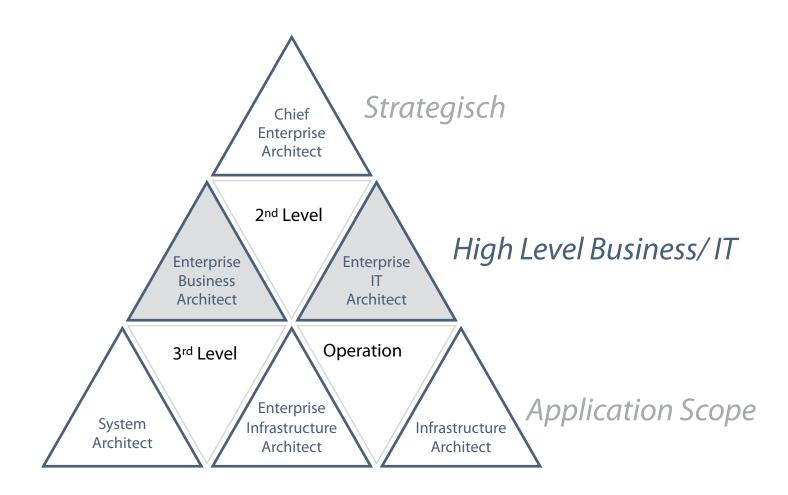

Ausgewählte Unternehmensarchitektur Frameworks

Vergleich von Unternehmensarchitektur Frameworks

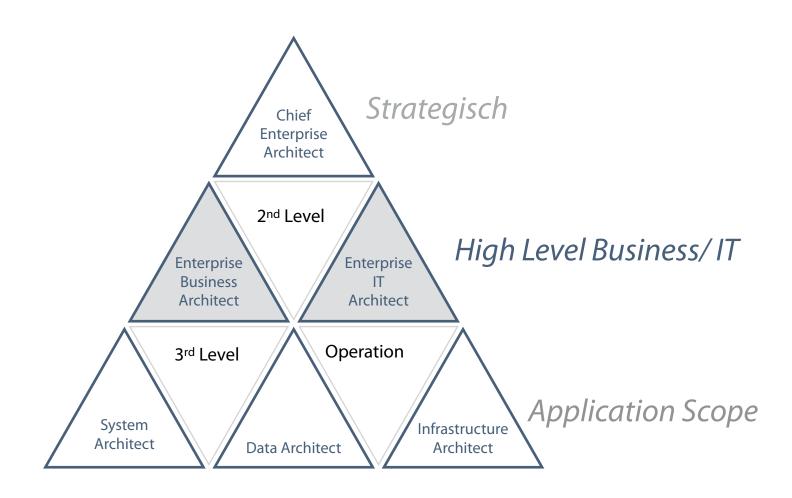
Enterprise Architektur Rollen


Ausblick Governance Frameworks

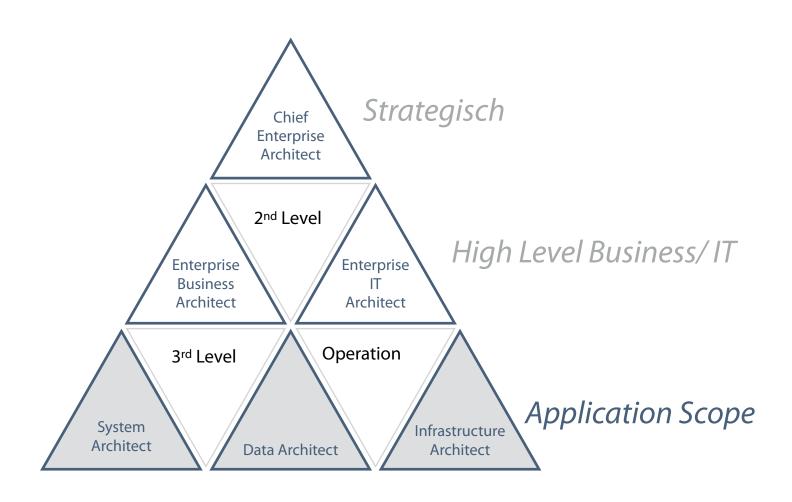
Hierarchische Struktur der EA Rollen


- Diese Rollen variieren von Unternehmen zu Unternehmen
- Nicht nur in der Bezeichnung, sondern auch in der Ausführung.
- Einzelne Rollen können in großen Unternehmen auch von Komitees oder Gruppen ausgeführt werden.

Quelle: Shah und Kurdi 2007, S. 38-39


Spezielle Werkzeuge für jede Ebene

- CEAs = EA Repository Owner und Leiter der Bewertungs-, Selektions- und Integrationsprozesse Einführung von unterschiedlichen Perspektiven
- Definieren direkt mit dem CIO die EA Policy
- Anleitung der Teammitglieder Grundarchitektur eines Unternehmens zu verbessern und Zielarchitekturen herzustellen
- Qualifikation: aktuellen Wissen über neue
 Technologien, Standards und Methoden und gutes
 Verständnis der Geschäftsidee
- Zusätzlich verantwortlich für die Projektplanung der EA


Enterprise IT Architect

- Analyse und Dokumentation von Systemen, internen und externen Schnittstellen und Datenflüssen
- Unterstützung der EA Dokumentation
- Gewährleistung von technischen Standards und Technologie und systembezogene Qualitäten generieren: Verfügbarkeit, Skalierbarkeit und Recoverability
- Verantwortlich für Anwendungsauswahl, Ausführungen, Entwicklung, Design, Evaluation von Architekturmodellen von aktuellen und gewünschten System in Zusammenarbeit mit dem Enterprise Business Architect

Enterprise Business Architect

- Hauptaufgabe: Schaffung von Business Prozess Modellen, um die Grenzen der EA abzustecken und die Überwachung der dafür eingeteilten Ressourcen
- Aufgaben: Analyse und Dokumentation der Geschäftsprozesse, Szenarien und Informationsflüsse durch die Identifikation der Schlüssellösungen
- Zusammenführung der IT-Komponenten und Geschäftskomponenten
- Sicherung der Integration von allen Business
 Standards, Modellen und Methoden

Data Architect

- Analyse und Design von Datenbanken bezogenen EA Komponenten und Datenvorschriften
- Datenmanagement, Speicher und Zugänge
- Datenwiederverwendung, die Koordination von Datenzentralisierung und Datenwiederherstellung

Infrastructure Architect

 Analyse und Dokumentation der Systemumgebungen und ebenfalls Netzwerkkommunikation, Operating Systems und Middlewares

System Architect

- Zusammenarbeit mit Enterprise IT Architekt
- Auswahl passender Anwendungsrahmenwerke,
 Systeme und angemessene Standards für die
 Bewertung der Systemqualität
- Erarbeitung eines Migrationsplans bei Systemtausch

Das RAIL-Modell

Unternehmensarchitektur Frameworks

Ausgewählte Unternehmensarchitektur Frameworks

Vergleich von Unternehmensarchitektur Frameworks

Enterprise Architektur Rollen

Ausblick Governance Frameworks

IT-Governance Frameworks

Beschreibung

- Referenzmodelle für die Ausrichtung einer IT-Governance
- Definieren die Prinzipien, Regeln und Prozesse, die eine effektive Entscheidungsfindung ermöglichen
- Bieten einen Rahmen, wie Entscheidungen getroffen werden, wer die Entscheidungsbefugnis hat und wie Entscheidungen kommuniziert werden

Nutzen

- Bieten eine einheitliche Struktur zur Entscheidungsfindung
- Bieten Klarheit zwischen der Geschäfts- und IT-Strategie
- Ermöglichen es der Geschäftsleitung und den Mitarbeitern innerhalb Ihrer Organisation, Erwartungen zu formulieren, sich zu beteiligen, zu kommunizieren und Rechenschaft abzulegen

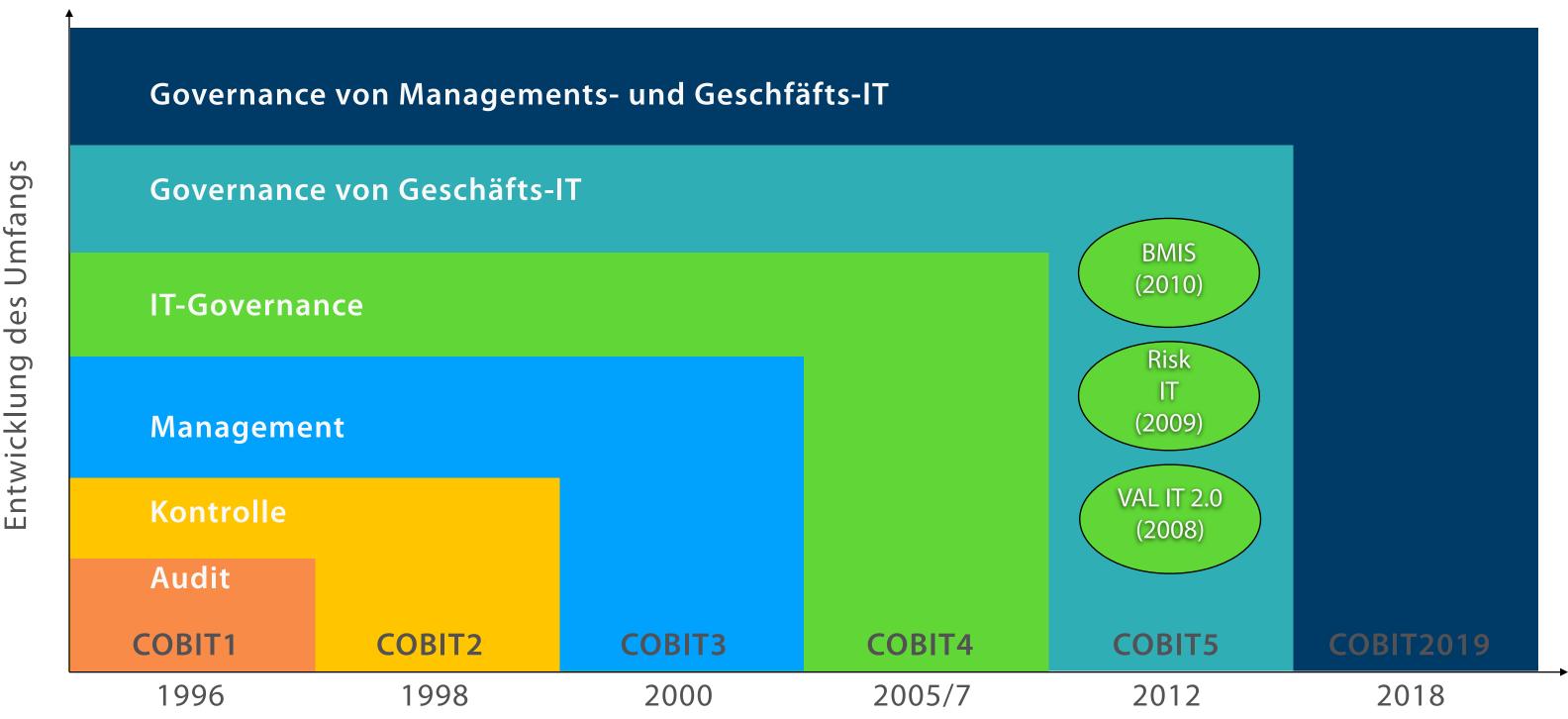
Beispiele

- COBIT (Control Objectives for Information and Related Technology)
- IT4IT
- ITIL (IT Infrastructure Library)
- ISO/IEC 20000

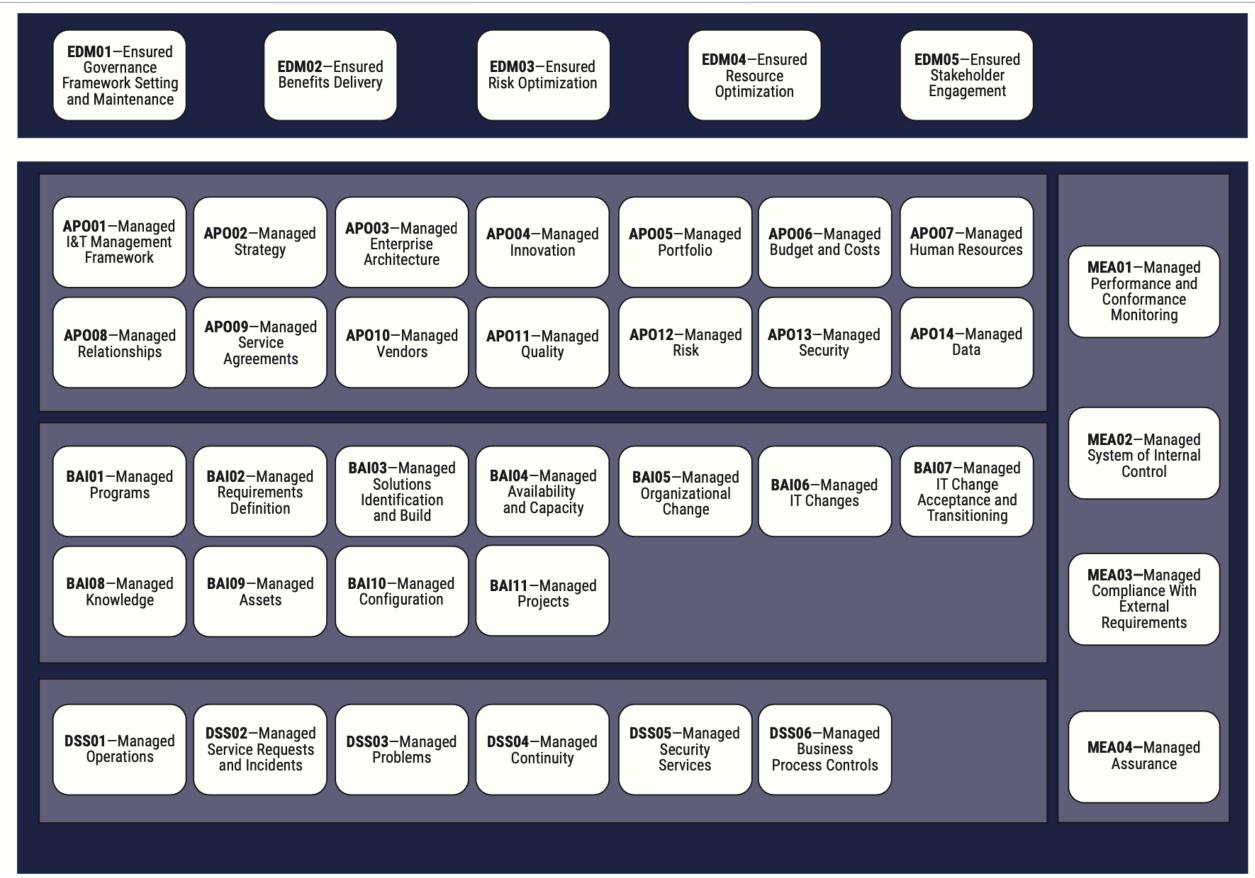
COBIT (Control Objectives for Information and Related Technology)

Beschreibung

- Entwickelt und vermarket von der Information Systems Audit and Control Association (ISACA)
- Besteht aus sechs Schlüsselprinzipien, drei Hilfsprinzipien und 40 Governancezielen, welche in einem Prozessreferenzmodell zusammengefasst werden


COBIT2019 Produktfamilie

- Einführendes Rahmenwerk
- Enabler-Handbücher
- Umsetzungsleitfäden


Eigenschaften

- Bildet alle IT-basierten Prozesse im Unternehmen ab
- Generisches Modell und daher für alle Größen von Unternehmen adaptierter
- Gibt an, was umzusetzen ist, jedoch nicht wie die Umsetzung erfolgen soll

Quelle: Asprion und Burda, 2019

Überblick der 40 Ziele im COBIT2019 Kernmodell

Quelle: ISACA 2019b

Sieben Komponenten zum Enablen der 40 Ziele

Eigenschaften

- Faktoren, die einzeln und in Kombination zu einem guten Funktionieren des Governance-Systems
- Dienen als "Best-Practices"
- Werden in einheitlicher und strukturierter
 Form beschrieben und beinhalten u.a.:
 - Prozesspraktiken
 - Prozessaktivitäten
 - Prozessmetriken und weiterführende Referenzmaterialien

Vor- und Nachteile von COBIT

Vorteile

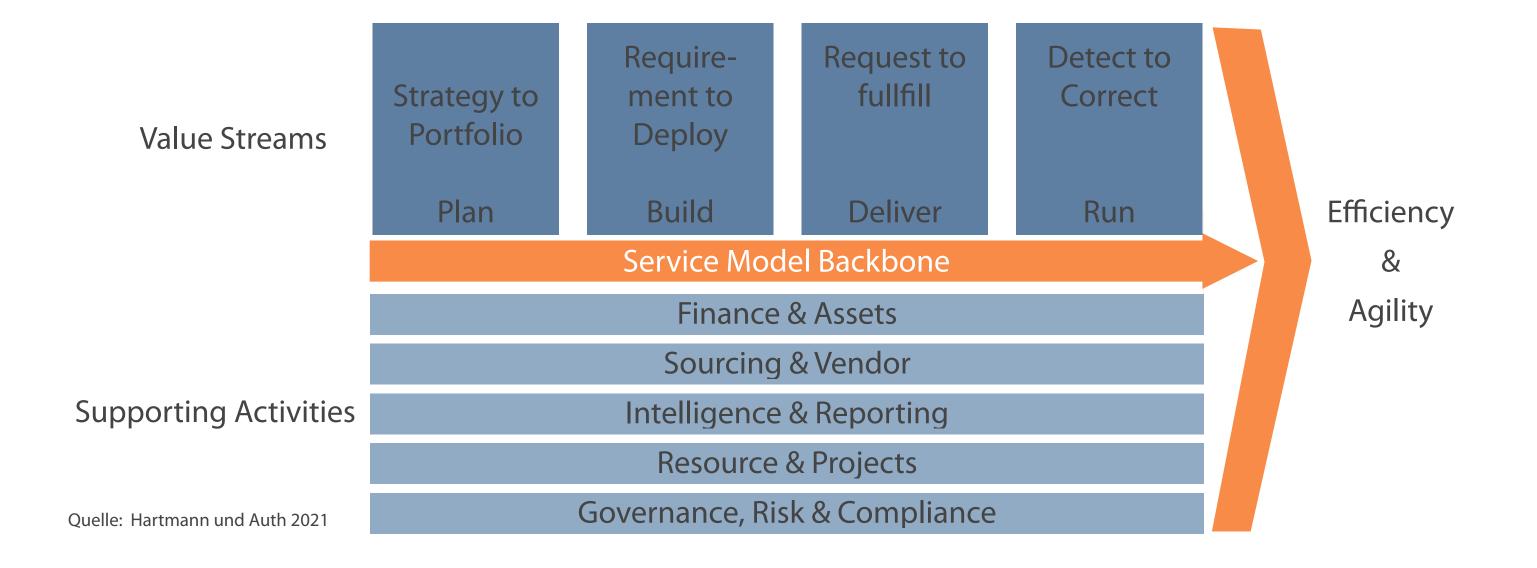
- Genutzt und anerkannt von vielen
 Organisationen und Ländern, u.a. EU
- Bietet eine systematische Herangehensweise und Sprache um Erfüllung der Leistungsziele von Unternehmen zu bewältigen
- Hilft bei der Berücksichtigung der Bedürfnisse von Interessengruppen im gesamten Unternehmen

Nachteile

- Komplizierte Konzepte und Struktur
- Kostenintensiv, da hohes Maß an Wissen und Expertise benötigt wird
- Fehlende Anleitung zur Implementierung

IT4IT Framework der Open Group

Grundlegenes


- Veröffentlich vom internationalen Consortium "The open group" im Jahr 2015
- Basiert auf dem prozess-orientierten
 Wertschöpfungskettenmodel von Michael Porter
- Beschreibt die Unternehmens-IT aus architektonischer Sicht
- Betrachtet die Dimensionen Information (Daten), Funktionen,
 Integrationen sowie IT services

Quelle: Hartmann und Auth 2021

IT4IT Framework der Open Group

Aufbau

- Die Wertschöpfungsströme "strategy to portfolio", "requirement to deliver",
 "request to fulfil" and "detect to correct" stellen den Kern des Models da.
- Gemeinsam mit unterstützenden Aktivitäten wie Finanzierung und Unternehmenssteuerung bilden sie das Skelett des Modells.

IT4IT Framework der Open Group

Vorteile

- Fokus auf Wertschöpfung: IT4IT unterstützt eine stärkere Ausrichtung der IT an den Geschäftszielen, indem es den IT-Lebenszyklus als Wertschöpfungskette strukturiert.
- Business-zentrierte IT-Architektur: IT4IT ist speziell auf die Belange der IT als Geschäftseinheit ausgerichtet,

Nachteile

- Mangel an strategischer Ausrichtung auf die Gesamtunternehmensarchitektur
- Strikte, teilweise zu starre Prozesse
- IT4IT ist hauptsächlich auf die IT-Organisation eines Unternehmens beschränkt. Es eignet sich nur dann als unternehmensweites Framework, wenn das Geschäftsmodell eines Unternehmens auf der Bereitstellung von IT-Diensten oder -Produkten für externe Kunden basiert.

Ouelle: Hartmann und Auth 2021

DevOps als Instrument für IT-Management

Beschreibung

- DevOps ist ein Ansatz, der Entwicklung (Development) und Betrieb (Operations) integriert, um Software schneller, zuverlässiger und mit höherer Qualität bereitzustellen.
- Effizienzsteigerung und Beschleunigung des gesamten Software-Lebenszyklus von der Entwicklung bis zur Bereitstellung
- Grundprinzipien sind Kultur, Automatisierung, Messung und Zusammenarbeit

Vorteile

- Schnellere Release-Zyklen durch Automatisierung und kontinuierliche Integration
- Reduziert Silos und unterstützt eine agile, innovationsorientierte Kultur in IT-Teams
- Schnelle Anpassung an sich ändernde Anforderungen und Nutzung

Nachteile

- Die Integration von Entwicklung und Betrieb erfordert erhebliche Anpassungen in Prozessen, Werkzeugen und Kultur
- Mitarbeitende benötigen spezifische Kenntnisse, um mit den neuen Prozessen und Werkzeugen arbeiten zu können.

DevOps als Instrument für IT-Management

Beschreibung

- DevSecOps ist eine
 Erweiterung von DevOps, die
 Sicherheit (Security) als festen
 Bestandteil des Entwicklungs und Betriebsprozesses
 integriert.
- Sicherheitsprüfungen und -prozesse in den gesamten Software-Lebenszyklus zu integrieren, um Sicherheit von Anfang an zu gewährleisten.
- Balance zwischen
 Geschwindigkeit und
 Sicherheit

Vorteile

- Risiken und Schwachstellen werden frühzeitig im Entwicklungsprozess identifiziert und behoben, bevor sie Produktionsumgebungen erreichen.
- Fördert die Zusammenarbeit zwischen Entwicklungs-, Betriebs- und Sicherheitsteams, was eine höhere Sicherheitskultur schafft.
- Automatisierung hilft bei der Einhaltung von Sicherheitsstandards und regulatorischen Vorgaben

Nachteile

- Die Integration von
 Sicherheitsprozessen erfordert
 zusätzliche Ressourcen,
 spezialisierte Tools und
 Expertise
- DevSecOps setzt eine Kultur des gemeinsamen Sicherheitsbewusstseins voraus, was in Organisationen mit starren Silos schwierig umzusetzen sein kann.
- Sicherheitsüberprüfungen können die Entwicklungszeit verlängern, insbesondere in stark regulierten Umgebungen.

Quelle: Myrbakken und Colomo-Palacios 2017, S. 18ff.

Architekturen betrieblicher Anwendungssysteme

Frameworks des Architekturmanagements

Lehrstuhl für Wirtschaftsinformatik Prozesse und Systeme

Universität Potsdam

Chair of Business Informatics Processes and Systems

University of Potsdam

Univ.-Prof. Dr.-Ing. habil. Norbert Gronau *Lehrstuhlinhaber* | *Chairholder*

Mail August-Bebel-Str. 89 | 14482 Potsdam | GermanyVisitors Digitalvilla am Hedy-Lamarr-Platz, 14482 Potsdam

Tel +49 331 977 3322

E-Mail ngronau@lswi.de

Web Iswi.de

Literatur

Asprion, P. M. & Burda, D. (2019). COBIT. In: Enzyklopädie der Wirtschaftsinformatik [online] https://www.enzyklopaedie-der-wirtschaftsinformatik.de/wi-enzyklopaedie/lexikon/daten-wissen/Grundlagen-der-Informationsversorgung/COBIT/index.html?searchterm=cobit (abgerufen am24.08.2020)

Alt, R., Auth, G., Kögler, C., Alt, R., Auth, G., & Kögler, C. (2017). Innovationsorientiertes IT-Management mit DevOps (pp. 21-32). Springer Fachmedien Wiesbaden.

BITKOM (2011): Enterprise Architecture Management – neue Disziplin für die ganzheitliche Unternehmensentwicklung, www.bitkom.org, 2011 (abgerufen am 31.05.2016

Buckl, S.; Matthes, F.; Schweda, C. (2010): Future Research Topics in Enterprise Architecture Management – A Knowledge Management Perspective, Journal of Enterprise Architecture, August 2010.

Chief Information Officers Council (1999): Federal Enterprise Architecture Framework Version 1.1.

Feuerer, S. (2007): Enterprise Architecture - An Overview. SAP Deutschland AG & Co. KG., 2007.

Goikoetxea, A. (2006): Enterprise Architectures and Digital Administration: Planning, Design and Assessment. World Scientific

Hartmann, A., & Auth, G. (2021). Positioning IT4IT in the face of classic Enterprise Architecture Frameworks. In INFORMATIK 2020 (pp. 183-195). Gesellschaft für Informatik, Bonn.

IDS Scheer AG (2008): ARIS 7.1 Methodenhandbuch. Saarbrücken, Dezember 2008.

ISACA. (2019a). COBIT. [Online] https://www.isaca.org/resources/cobit (abgerufen am 24.08.2020)

ISACA. (2019b). COBIT 2019 Framework: Introduction and Methodology. [Online] https://www.isaca.org/resources/cobit (abgerufen am 24.08.2020)

Krallmann, H.; Frank, H.; Gronau, N. (2002): Systemanalyse im Unternehmen: Vorgehensmodelle, Modellierungsverfahren und Gestaltungsoptionen. Oldenbourg Wissenschaftsverlag. München, 2002.

Matthes, D. (2011): Enterprise Architecture Frameworks Kompendium, Springer-Verlag Berlin Heidelberg, 2011.

Myrbakken, H., & Colomo-Palacios, R. (2017). DevSecOps: a multivocal literature review. In Software Process Improvement and Capability Determination: 17th International Conference, SPICE 2017, Palma de Mallorca, Spain, October 4–5, 2017, Proceedings (pp. 17-29). Springer International Publishing.

Shah, H.; El Kourdi, M. (2007): Frameworks for Enterprise Architecture, IEEE, 1520-9202/07/, September/ October 2007.

Sowa, J.; Zachman, J. (1992): Extending and formalizing the framework for information systems architecture. IBM Systems Journal VOL 31, No 3 S. 590 - 616, 1992.

U.S. Department of Defence (2007): DoD Architecture Framework Version 1.5 - Volume 1 Definitions and Guidelines. Veröffentlichung vom 23. April 2007.

Van Haren (2007): TOGAF 2007 Edition: (Incorporating 8.1.1). Van Haren Publishing. LJ Zaltbommel, 2007

TOGAF® VERSION 9.1 – A POCKET GUIDE, Van Haren Publishing, zuletzt zugegriffen Juni 2016.

Winter R. and Fischer R., "Essential Layers, Artifacts, and Dependencies of Enterprise Architecture," 2006 10th IEEE International Enterprise Distributed Object Computing Conference Workshops (EDOCW'06), Hong Kong, China, 2006, pp. 30-30, doi: 10.1109/EDOCW.2006.33.

Zachman, J. (1987): A framework for information systems architecture. IBM Systems Journal VOL 26, No 3 S. 276 - 292, 1987.

Zachman, J. (1997): Enterprise Architecture: The Issue of the Century - Artikel im Magazin Database Programming and Design. Miller Freeman, Publisher 415-905-2552, 1997