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Abstract 

 

Technological advancements are giving rise to the fourth industrial revolution - 

Industry 4.0 - characterized by the mass employment of smart objects in 

networked big data environments. Enabled by cyber-physical capabilities, 

Industry 4.0 vision describes a realization of highly reconfigurable, self-

organizing, decentralized, thoroughly connected, and resilient industrial product-

service systems. The purpose of this paper is to propose a theory-based 

knowledge dynamics model in the smart grid scenario that would provide a 

holistic view on the novel, knowledge-based interactions among smart objects, 

humans, and other actors as an underlying mechanism of value co-creation in 

Industry 4.0. An integrated, multi-loop and three-layer - physical, virtual, and 

interface - model of knowledge dynamics in smart grid scenario is developed by 

building on the concept of ba – an enabling space for interactions among actors 

and the emergence of knowledge. The model depicts how big data analytics are 

just one component in unlocking the value of big data, whereas the tacit 

engagement of humans-in-the-loop – their sense-making and decision-making – 

is needed for ba to be activated, insights to be evoked from big data analytics 

reports, and individual customer needs to be met. 
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1. Introduction: The emergence of Industry 4.0 

 

The fourth industrial revolution, commonly termed as Industry 4.0, is currently taking place. 

Since the beginning of industrialization, technological advances have led to transformations 

that are termed as industrial revolutions (see Figure 1). The first three were termed as industrial 

revolutions ex-post and were characterized predominantly by mechanization, electrification, 

and division of labor, and widespread digitalization (Hermann et al., 2016; Lasi et al., 2014). 

In contrast to the first three, this one was established ex-ante and is characterized by a range of 

new technologies that are converging the physical, digital and biological worlds and radically 

impacting all industries and economies, even challenging how humans work and relate to each 

other (Schwab, 2017). The term “Industry 4.0” originates from Germany where it became 

publicly more known with a strategic initiative called “Industrie 4.0” and becoming a part of 

“High-Tech Strategy 2020 for Germany” (Kagermann et al., 2011). The growing interest in 

Industry 4.0 is evidenced by numerous research and strategic initiatives proposed by the main 

industrial countries, which aim to develop more intelligent and sustainable industrial systems. 

China announced its research initiative “Made in China 2025” while the USA has its initiative 

“Industrial Internet”. Other terms that attempt to describe the new industrial transformation are 

“smart industry”, “integrated industry” or “smart manufacturing” (Hermann et al., 2016).  

 

 
Figure 1. Industrial revolutions 



 

 

 

Industry 4.0 scenarios are characterized by the mass deployment of smart objects (SOs), 

such as smart machines, smart meters, home appliances, and electric vehicles. The foundation 

of SOs and an “enabling technology” of Industry 4.0 are cyber-physical systems (CPS). CPS 

are not a new technology by themselves, but rather a convergence of several emergent 

technologies such as the Internet of Things, Internet of Services, Multi-Agent Systems, 

Service-oriented Architectures, Augmented Reality, Machine-to-Machine, and ubiquitous 

availability of computing, communication, and storage (Leitao et al., 2016). They are 

characterized by the cyber-physical formulation of their systems, that is, the symbiosis between 

their physical function and the abstract representation of this function which is a machine-

readable description in the virtual space (Monostori, 2014; Leitao, 2016).  

Industry 4.0 provides several application fields: smart production, smart grid, smart 

logistics, and smart healthcare (Leitao et al., 2016). Our knowledge dynamics exploration in 

Industry 4.0 is informed by the industrial smart grid (SG) scenario (Greer et al., 2014). The 

foundation of SG is a strong coupling of digital technologies with the physical energy domain, 

particularly via mass deployment of SOs, that is, networked embedded devices such as smart 

meters, home appliances, and electric vehicles. Networking is achieved by using SOs and 

decentralized energy management systems to coordinate the individual components. This 

means that not only energy but also data is transported in SG, so that network participants 

receive information on energy production and consumption at short intervals.  

Thus, increasing use of networked SOs results in the continual generation of high 

volumes and heterogeneous data types coming from multiple sources, i.e. big data (Alahakoon 

and Yu, 2016; Lee et al., 2015). In SG scenario, smart meters capture data with big data 

characteristics, for instance, massive amounts of fine-grained energy consumption data which 

enable many potential opportunities for generating value from such data, such as for decision-

making and planning processes (Alahakoon and Yu, 2016). Being agents with embedded 

computation and physical processes, SOs have a role not only in capturing data through sensors 

but as well managing and learning from big data and acting upon the environment using 

actuators (Lee et al., 2015). As a particular characteristic of Industry 4.0, advanced big data 

mining algorithms are integrated within SOs at dispersed parts of the system, facilitating 

distributed big data analytics (Leitao et al., 2016). This enables SOs to perform complex 

autonomous acts, that is, to control their internal states and behavior, and to realize self-x 

properties such as self-learning or self-healing, in other words, autonomous, self-organizing 



 

 

 

machine intelligence (Gronau, 2016; Gronau et al., 2016; Leitao et al., 2016). Due to the 

application logic that SOs carry, real-time decision making based on big data can be done by 

SOs in an automated manner. Enabled by the CPS capabilities, Industry 4.0 vision describes a 

realization of highly reconfigurable, self-organizing, decentralized, thoroughly connected, and 

resilient industrial systems (Alahakoon and Yu, 2016; Gronau, 2016; Kagermann et al., 2013; 

Lee et. al, 2016; Leitao et al., 2016). Artificial intelligence-enabled automation has been 

proclaimed as a backbone of the fourth industrial revolution by World Economic Forum 

(Schwab, 2016). The shift towards always-responsive and situated service provisioning is as 

well brought to the table by a huge amount of fine-grained data, collected, stored, and analyzed 

by SOs. Industry 4.0 enables the creation of individualized, “batch size one” products and 

individual customer needs to be met (Lasi et al., 2014; Miorandi et al., 2012; Monostori, 2014).  

The deployment of SOs in Industry 4.0, hence, has not only a technical but also a social 

dimension regarding humans who interact with them and use their services (Oks et al., 2017). 

In this sense, Industry 4.0 marks a shift toward service transformation in the big data 

environment, that is, a shift toward CPS-based Product-Service Systems with humans as active 

participants (Kagermann et al., 2013; Lee et al., 2014; Lee et al. 2016, Leitao et al, 2016). 

However, some limitations could be observed in research concerning this socio-technical 

aspect of Industry 4.0. The role of humans-in-the-loop and their knowledge as a part of value 

co-creation in new industrial ecosystems has so far not been sufficiently considered (cf. Leitao 

et al., 2016). Furthermore, we have failed to identify an integrated framework that would 

involve knowledge-based activities of both machine and human actors. Taking these issues into 

consideration raises the following research question: 

 

RQ: What is the role of human and machine knowledge, and their interactions, in 

unlocking the value of Industry 4.0 SG scenario? 

 

In this conceptual paper, we attempt to address this question by developing a model that would 

provide a holistic view on knowledge dynamics as an enabler of value co-creation in Industry 

4.0 smart grid (SG) scenario. Our working definition of knowledge dynamics is that of 

interdependent knowledge-based activities performed by the multiplicity of actors of the socio-

technical world – including SOs, computational entities, and human actors – which lead to 

value co-creation. In Industry 4.0 CPS-based product-service systems, the target of value co-



 

 

 

creation is not a product offering, but a collaborative product-service solution that can satisfy 

customers’ needs (Lee et al., 2014).  

The paper is structured as follows. We start by covering the research context and 

methodology (sec. 2) and follow by critically examining and clarifying the terms data, 

information, human and machine knowledge (sec. 3.1 and 3.2). Furthermore, we discuss issues 

of modeling knowledge dynamics (sec. 3.3). Afterwards, we provide an overview of 

knowledge dynamics in SG scenario (sec. 4). By analyzing current literature, we extract 

components of SG ecosystem which we then apply in the conceptual model (sec. 4.1) and 

describe its operational mechanism as an enabler of the value ecosystem that it creates (sec. 

4.2). The paper proceeds with a discussion (sec. 5), implications of the proposed model (sec. 

6), limitations and future research (sec 7) and a conclusion (sec. 8).  

2. Research context and methodology 

A thorough review of the KM literature revealed that a holistic model regarding knowledge 

dynamics in Industry 4.0 scenarios does not exist yet. To be specific, we have used a 

combination of keywords, such as Industry 4.0, industrial internet, big data, internet of things, 

internet of services, big data analytics, to review the articles in Journal of Knowledge 

Management, VINE Journal of Information and Knowledge Management Systems, Knowledge 

Management Research and Practice, and Journal of Information and Knowledge management. 

Among the total of 67 papers that we have found, only one paper addresses Industry 4.0, a 

research contribution carried out by Wilkesmann and Wilkesmann (2018) in VINE. The 

authors investigated how different ways of organizing human work in Industry 4.0 digitalized 

environment may lead either to the reproduction of routines or to innovations. However, the 

focus of the study was on enhancing the understanding of the potential that Industry 4.0 

environment provides, and to review some current implementations, and not on the nature of 

human and machine knowledge-based interactions as enablers of value co-creation in Industry 

4.0. There are a number of papers covering big data, big data analytics, Internet of Things and 

related research topics (e.g. Lugmayr et al., 2017; Pauleen and Wang, 2017; Sumbal et al., 

2017), which allowed us to enhance our understanding of important questions and themes. In 

a recent paper on the interrelationship between big data and KM, Sumbal et al. (2017) 

underscored that human tacit knowledge is necessary to better understand, test, confirm or 

reject the results obtained through big data analytics. Lugmayr et al. (2017) introduce the term 



 

 

 

Cognitive Big Data to stress the socio-technicality of knowledge systems, to show the 

interdependency of the computational systems and the human mind, and to emphasize the need 

of big data research that would focus on assisting humans in their cognitive efforts. This 

research provided relevant hints on the nature of the relationship between the machine and 

human knowledge, however, since, similar to Sumbal et al. (2017), it does not address Industry 

4.0 scenarios, it provides only limited directions for knowledge dynamics in Industry 4.0, the 

focus of our study. Addressing the identified need, in this paper, we attempt to build a coherent 

model of knowledge dynamics in the Industry 4.0 SG scenario.  

Specifically, to address our research question, first, we draw upon relevant KM 

theories, foremost on Polanyi`s, common (albeit often misinterpreted) reference point for his 

successors, in an attempt to seek answers to epistemologically fundamental questions such as: 

What is the nature of knowledge? What is the difference between human and machine 

knowledge? We attempt to do so since we believe that “questions of method are secondary to 

questions of paradigm, which we define as the basic belief system or worldview that guides the 

investigator, not only in choices of the method but in ontologically and epistemologically 

fundamental ways” (Guba and Lincoln, 1994, p. 105). It is our contention that the view on the 

nature of knowledge needs to be explicated since this epistemological disposition will guide 

the understanding of the important questions pertaining to the modeling of knowledge 

dynamics. The particular value of our model then lies in explicating theoretical assumptions 

underlying the nature of knowledge and considering the consequences of these assumptions on 

the knowledge dynamics modeling in Industry 4.0 SG scenario. The argument put in this paper 

is that missing from dominant models of knowledge dynamics was the recognition that human 

tacit knowledge cannot be converted or operationalized due to its emergent properties (see Sec. 

3.3. for further discussion). Following this logic, as we will detail later, our main conceptual 

move in building knowledge dynamics was to adopt the concept of ba (Nonaka and Konno, 

1998), since it allowed us to account for the emergent nature of knowledge-based interactions.  

Second, to understand knowledge dynamics in Industry 4.0 we reviewed a variety of 

science and technology studies in journals on industrial and systems engineering, 

manufacturing, computer science, and networks, with a particular focus on the topic of the use 

of knowledge in smart grids (cf. Alahakoon and Yu, 2016) and in new industrial systems more 

generally (cf. Lee et al., 2015; Leitao et al, 2016). Our investigation revealed that existing 

contributions only partially analyze human-machine knowledge-based interactions. Integration 



 

 

 

of these various theoretical strands, however, provided a substantial basis for our understanding 

of knowledge dynamics in Industry 4.0. To be specific, based on the critical analysis of 

literature in a broad range of fields covering Industry 4.0 and KM, and on a combination of 

those viewpoints, we have conceptualized main components relevant for the implementation 

of SG scenario and their relations and operationalized them into the coherent three-layer and 

multi-loop knowledge dynamics model. Then, we illustrated the application of the model 

through the human-to-machine interaction via a user interface in the SG scenario.  

 

3. Conceptual foundations: nature of knowledge and the concept of ba  

3.1. Duality of knowledge 

It has been more than 50 years since Polanyi (1966), the scientist and philosopher, provided a 

foundational theory where he was pondering knowledge in terms of the duality, that is, tacit 

and explicit knowledge as being indivisible and mutually constituted. Such, constructivist 

rationale, is in mere contrast to the positivist rationale and its foundational assumption of the 

tacit-explicit dualism - that knowledge can be deconstructed into discrete units with an 

implication that knowledge is an artifact that people or machines can possess (e.g. Kogut and 

Zander, 1992). The implication of the constructivist assumption of the duality, on contrary, is 

that knowledge is embodied (i.e. it doesn`t exist outside the knower), socially constructed (i.e. 

it is co-created by the human individual and social sensemaking), tied to a practice (i.e. it is 

inseparable from the interactions), and culturally embedded (i.e. it is shaped by the 

sociocultural context in which interactions occur) (e.g. Brown and Duguid, 1991; Hislop, 

2002). 

By following researchers who criticize the positivists` stance for neglecting 

inarticulable personal, social, and cultural aspects of knowledge and over-emphasizing the 

technological matters (e.g. Hislop, 2002; Tsoukas, 2005), we base our understanding of 

knowledge on the constructivist rationale, particularly on Polanyi`s (1966) theory. To illustrate 

the essence of this view on knowledge, let us imagine a prosumer in an SG scenario, where, 

due to the adoption of renewable generation and microgrids, millions of prosumers both 

produce and consume energy in their homes and businesses. This leads to the creation of energy 

markets where prosumers need to optimize both their production and consumption to maximize 



 

 

 

their profits through their local trading decisions in a real-time (see Sec 4.2.3 for further 

discussion).  

 
Figure 2. Dynamic relations that comprise human knowing 

 

We assume a context where a prosumer receives information about a trading situation via user 

interface (UI) embedded in a smartphone- such as energy prices and forecasts about the 

consumption or production on the market, makes sense out of it and decides how to act upon it 

– whether to sell the energy (generated or stored earlier) or to buy energy (either for 

consumption or storage). Prosumer has the skill to trade the energy, that is to say, her tacit 

knowledge enables her to perform the action of trading energy – she knows trading strategies 

and rules of the game governing the speculations on the market. However, the prosumer is only 

aware on a subsidiary level of such knowledge – she knows more than she can tell (Polanyi, 

1966). The object of her focal awareness, the focal target, is the market speculation itself. An 

attempt to focus on the trading ability or how to interact with the UI, for example, would make 

her “performance clumsy to the point of paralyzing it” (Tsoukas, 2005, p. 6), that is, such focus 

would deprive these tacit components of meaning (Polanyi and Prosch, 1977). Instead of 

attending to the tacit components, the knower – in order for her action to be effective in a real-

time – only subsidiarily relies on them (attends from them) and switches her focal attention 

(attends to) something else – effective market speculation (Polanyi, 1966; Tsoukas, 2005). 



 

 

 

Since the integration of the subsidiaries to the focal target relies on the internal tacit act, tacit 

knowledge is inherently inarticulable (Polanyi and Prosch, 1977). What occurs as a result of 

an attempt of articulation is a new artifact, which is mutually constitutive with the tacit 

background but is not articulated tacit knowledge per se. As Polanyi (1966, p. 20) elaborates, 

even what is often considered to be the detached, objective knowledge, such as the information 

about the prices of the energy or market dynamics forecasts received via UI, “can be only 

constructed by relying on prior tacit knowing and can function as a theory only within an act 

of tacit knowing”.  

Thus, in the case of our prosumer, the sense she will make of energy prices and market 

dynamics forecasts will vary from other prosumers depending on her tacit knowledge, which 

includes, among others, personal needs, values, beliefs, know-how, and emotions. The 

prosumer decision making, regarding, for example, buying or selling energy, would as well 

depend on the same factors. Equally, sense-making of different reports will depend on the 

context of a knowledgeable audience, that is, the reports will be “read” differently in the 

household or business context, and differently “read” by every individual depending on her or 

his tacit knowledge (Stenmark, 2002). It could be, therefore, more fruitful to focus on 

“knowing” activity, which is about relations and interactions, rather than on “knowledge” as 

an object, which is about possession.  

Polanyi argued that the tacit and focal terms cannot be conceived separately from 

articulate and explicit, and insisted on overcoming well-established dichotomies such as 

objective vs. personal. Nevertheless, we believe it is useful to keep some of these terms 

conceptually distinct to facilitate the analysis. As depicted in Figure 2, tacit and explicit 

components are presented separately but we use the double-headed arrow to indicate the duality 

(i.e. mutual constitutiveness of tacit and explicit) inherent to human knowledge-based 

(knowing) activities such as sense-making, articulating, and decision making.  

 

3.2. Machine and human knowledge  

In KM literature, when discussing the relationship between knowledge and technology, one 

important point of discussion is whether human knowledge can be formally described so that 

a digital machine can handle it. Positivists would argue that human knowledge can be 

objectified and codified, and would seek to utilize technology for handling a representational 



 

 

 

understanding of knowledge. Constructivists, on the contrary, would argue that human 

knowledge cannot be separated from the knower and that what can be found outside in a 

formalized, explicit form is merely data and information (Stenmark, 2002). However, the 

answer to whether a machine can generate knowledge and act intelligently, it is our contention, 

depends on how machine knowledge and intelligence are understood. While arguing that tacit 

components of knowing, since inherently inarticulable, remain beyond calculative rationality 

that computers can simulate, we believe that it is beneficial to use the term machine knowledge 

and related concepts such as artificial intelligence and machine learning. In this sense, 

machines can convey data and information, but they cannot “be said to communicate an 

understanding of themselves” (Polanyi, 1958, p. 21), which remains under the domain of tacit 

knowing. Thus, only by “virtue of this act of comprehension, of this tacit contribution of [her] 

own, can the receiving person be said to acquire knowledge” (Polanyi, 1958, p. 22).  

We follow Ackoff (1989) to define data as symbols representing objects and events. 

Big data, then, comprises data sets of enormous size and complexity, having characteristics 

such as volume, variety, velocity, and veracity, signifying magnitude of data, structural 

heterogeneity, the rate at which data are generated, and unreliability of data, respectively 

(Gandomi and Haider, 2015). We consider as useful to differentiate data and information in 

terms of their functional differences (rather than structural); thus, one way is to perceive 

information as data that is processed into a usable form (Ackoff, 1989). We further understand 

the application of big data analytics and artificial intelligence fields as a way of achieving 

higher-level “learning capabilities” of machines, used to identify non-obvious, hidden 

relationships and patterns in big data (Sumbal, 2017). Whereas what constitutes machine 

knowledge, then, inevitably alters with technological advancements, the essence remains: it is 

based on the logic that can be specified and, thus, automated (Ackoff, 1989). To put these 

thoughts into the context of Industry 4.0 and CPS, it is worthwhile to note that the old “expert 

system” and rule-based approach to artificial intelligence is nowadays complemented with 

more complex statistical processes. In the Industry 4.0 environment, SOs are capable of 

learning, adjusting and acting in the environment. Advances in machine learning include deep 

learning techniques which exploit multilayered neural networks that aim to mimic the thought 

and decision-making process of humans (cf. Lee et al., 2016; Sonntag et al., 2017). Still, 

humans handle resulting machine-generated data and information independently. They make 

sense of these results in their unique way, creating connections through the tacit acts, and 



 

 

 

subsequently, make decisions. At the same time, the complexity of human context, its personal, 

social and cultural dimensions, is hard to detect and interpret in machine`s terms; big data and 

subsequent analytics reports (articulate, explicit artifacts) lose meaning and value without 

context that needs to be brought to bear in order to adequately disambiguate them (cf. Boyd 

and Crawford, 2012). In Table 1 we provide an overview of the definitions, properties, and 

activities related to machine and human knowledge. 

 

 
Table 1. Machine and human knowledge: definitions, properties, and activities 

 

 MACHINE DOMAIN (DATA SPACE) 
HUMAN DOMAIN 

(EXPERIENCE SPACE) 

 
DATA INFORMATION 

MACHINE 

KNOWLEDGE AND 

INTELLIGENCE 

TACIT KNOWING 

Definition 

Data: Symbols that 

represent properties of 

objects, events 

Big data: Large 

volumes of diverse types 

of data generated at 

frequent intervals 

Descriptions, 

processed data 

into usable form 

Ability to apply 

algorithms, learn, and 

predict 

The act of relating, dynamic 

capability 

Knowledge-

based 

activities 

Big data sensing 

(based on predefined 

data-structure embedded 

in the sensor)  

Big data 

management 

(processing, 

integration, and 

aggregation of 

data to create 

information) 

Big data analytics 

(modeling and 

analysis; including the 

application of artificial 

intelligence fields such 

as supervised and 

unsupervised machine 

learning; deep 

learning) 

Dialoguing with data, sense-

making, and decision-making 

(involving personal needs, 

beliefs, values, know-how, 

and emotions) 

Properties Based on the logic that can be automated Emergent 

 

Further consequential argument adopted by constructivists is that data and information 

processed by machines require tacit knowledge not only to be understood but as well to be 

created. That is, there is neither “raw data” nor “isolated pieces of simple facts”; data emerge 

as a result of a pre-defined data structure, which defines the meaning of the phenomena sensed 

from the environment (Tuomi, 1999). Since the instrument used to collect data determines 



 

 

 

meaning relations that define what data is, the term “raw data” is an oxymoron (cf. Gitelman, 

2013).  

By perceiving its potential value in enabling real-time and evidence-based decision 

making based on real-time or “active” data, organizations seek to find processes to turn these 

increasingly large volumes of diverse types of data generated at frequent intervals, that is, big 

data, into meaningful insights (Gandomi and Haider, 2015; Lee et al, 2016). Particularly in the 

marketing realm, driven by the positivist rationale, the assumption is often made that big data 

analytical tools and artificial intelligence are capable of extracting “actionable insights”. 

However, since the “act of personal insight” is inherent in the act of tacit knowing (Tsoukas, 

2005), the active involvement of humans is still required. Automated big data analytics make 

sense and unveil hidden patterns by applying algorithms to the “data space” (Lugmayr et al., 

2017). Nevertheless, whereas they are the first stage in unlocking the value of big data, humans 

still need to make sense of reports (new data and information) and make their own decisions 

accordingly. This might involve critically testing assumptions, tracing backward the analysis, 

and discarding some aspects of the data and focusing on others, further data gathering and 

analyzing to justify initial insights (Labrinidis and Jagadish, 2012).  

 

 
Figure 3. Differences in perceptions how insights are gained in “big data environment” 

according to the positivist and constructivist perspective 

 



 

 

 

Insights, then, emerge as a result of the sense-makers` engagement with the data and will vary 

depending on the sense-makers’ tacit knowing, that is, on the inarticulable internal tacit act 

which makes connections with personal needs, beliefs, values, know-how, and emotions, 

rooted in what Lugmayr et al. (2017) call “experience space”. This is “a process of dialogue 

rather than one of discovery”; insights can only be “evoked by the data” but cannot be 

“explained from the data” (Bryant and Raja, 2014). That is, insights emerge from data, but 

cannot be revealed by the data itself: they are the result of the synergy of big data, analytic 

tools, and human tacit knowing (cf. Sumbal, 2017), a synergy where intuition leads synthesis 

of isolated bits of data and experience into an integrated, emergent picture that is more than 

sum of parts and results in an “aha!” experience (see Figure 3).  

 

3.3. Modeling knowledge dynamics 

Models of knowledge dynamics that are largely rooted in the positivistic logic, however, have 

limitations in representing the tacit, emergent properties of knowledge. As emphasized by 

Bratianu (2016), they are based on the two metaphors: knowledge as a flow (e.g. Nissen, 2002), 

which focuses on how knowledge moves through organizations and knowledge as a process 

(e.g. Gronau et al., 2016), which focuses on knowledge conversions between tacit and explicit 

knowledge. Such conceptualizations lead to two major limitations. First, the knowledge 

dynamics models based on the metaphor of knowledge as a flow do not account for the “forces 

which generate and control the knowledge flow” (Bratianu, 2016, p. 325). They do not 

acknowledge that all articulated content exists only in relation to an unarticulated tacit 

background. Second, conversions of tacit knowledge into explicit knowledge, implied by the 

knowledge dynamics model based on the metaphor knowledge as a process, reflect the dualistic 

view on knowledge, as discussed earlier.1  

                                                

 

 
1 Polanyi`s notion of duality of knowledge was often misinterpreted by his successors, most notably Nonaka and 

Takeuchi (1995). In their knowledge creation theory, they posited that knowledge is explicit and tacit along a continuum (cf. 

Nonaka and Von Krogh, 2009) and that tacit knowledge can be converted – to some degree - to explicit knowledge, that is, 

that it can be articulated in a form of concepts, models, hypotheses, metaphors, and analogies. However, such a view of tacit 

knowledge is not congruent with Polanyi`s, who perceived tacit as indivisible and essentially unspecifiable part of all 

knowledge. Later, Nonaka and Konno (1998, p. 40) offered a more holistic approach to knowledge by utilizing the Japanese 



 

 

 

Knowledge dynamics models rooted in constructivist epistemology is in need of a 

conceptualization that more closely reflects the original intentions of Polanyi regarding tacit 

and explicit as inseparably related, as well as the emergent nature of knowledge-based 

interactions. That is, since it is not possible to completely specify in advance what kind of 

knowledge (also when and where) is going to be needed and relevant (Tsoukas, 1996, p. 11), 

the interactions are “always richer than any formal representation of it” (Tsoukas, 1996, p. 18). 

Putting the matter in those terms implies that knowledge dynamics models – instead of 

attempting to formalize, operationalize, or convert tacit knowledge – must turn to the human 

interaction as a primal source of knowledge emergence (Kakihara and Sørensen, 2002). In 

particular, to understand knowledge dynamics, we need to be attentive equally to the articulated 

content (data and information) provided by technical entities, to interaction through which the 

emergent tacit components get engaged, and to the space-time locationality in which this 

interaction occurs. It is the position resting on a view of knowledge as duality - and emergent 

properties of such duality - that provides the substantive basis for our knowledge dynamics 

modeling.  

In KM tradition, the most influential account of dynamic properties of knowledge 

creation was provided by Nonaka and Konno`s (1998, p. 40) concept of ba as a “shared space 

for emerging relationships.” Ba is grounded in the view that organizations are not merely an 

information processing machine, but an “entity that creates knowledge through action and 

interaction” (Nonaka et al., 2000, p. 6). Since it accounts for the inherent relational aspects of 

knowledge, it appears that there is a solid foundation to associate the concept of ba to Polanyi`s 

notion of duality of knowledge, particularly when the aim is to depict knowledge interactions 

or dynamics (cf. Grant, 2007). 2  

 

                                                

 

 
concept of ba, that is, “a shared space for emerging relationships”, however, by that time the tacit-explicit dichotomy already 

became part of the conventional understanding of knowledge among knowledge management theoreticians and practitioners. 
2 Nonaka and Konno distinguished four types of ba (i.e. originating, interacting, internalizing, and connecting) that 

correspond to the four conversions between explicit and tacit knowledge (i.e. explicit to tacit, tacit to tacit, tacit to explicit, 

explicit to explicit). Since this line of thought has a rationale in knowledge conversions which we, as stated previously, object, 

at least in this present study, we don`t attempt to go further into adapting the framework consisting of 4 types of ba to Polanyi`s 

notion of duality and including it into the knowledge dynamics modeling.  



 

 

 

 
 

Figure 4. Ba: A relational space for emergent interactions through physical, virtual, and mental 

space 

 

We understand ba as an enabling space for interactions and knowledge emergence, which 

requires human contribution (tacit knowing). Specifically, we perceive three mutually related 

accounts of ba. The first addresses the obvious: ba is a location where knowledge-based 

interactions take place, which involves mental (e.g. values, emotions, beliefs, needs), virtual 

(e.g. networks), and physical (e.g. factory, smart home) components. Moreover, ba unifies 

these components “in order to profit from the ‘magic syntheses` of rationality and intuition” 

(Nonaka and Konno, 1998, p. 41). The second sense denotes ba as an existential space, a 

“shared context in motion” (Nonaka and Toyama, 2003, p. 8) in which human actors engage 

their tacit knowing (through time and space-sensitive, always unique configurations of 

interactions (Nonaka and Toyama, 2003). This sense of ba puts into focus that human 

engagement, their tacit knowing, is required to evoke insights and create meanings out of data 

and information provided by, for example, big data analytics reports. As Nonaka and Konno 

(1998, p. 41) emphasized, “If knowledge is separated from ba, it turns into information, which 

can then be communicated independently from ba. Information resides in media and networks. 

It is tangible. In contrast, knowledge resides in ba. It is intangible”. The third account of ba 



 

 

 

implies an enabling context or enabling conditions for actors` interactions and knowledge 

creation (cf. Wei Choo and Correa Drummond de Alvarenga Neto, 2010).  

In Industry 4.0 big data analytics are applied with an aim to address Industry 4.0 specific 

challenges and to unlock the value of big data. However, by using ba as a building block in 

knowledge dynamics modeling, as we will describe in the following sections in more details, 

we argue that big data and information can be analyzed automatically and can flow digitally 

through the virtual and physical space, while insights emerge only through the human tacit 

involvement in the mental space (as illustrated in Figure 4). 	

4. A conceptual model of knowledge dynamics in Industry 4.0 smart grid 

scenario 

4.1. Model components 

SG scenario offers a vision of smart energy systems in which energy producers, energy 

facilities, smart grid management, and energy customers are networked with one another in an 

evolving complex system of systems. Hermann et al. (2016) provide a useful basis for 

developing utilized constructs for the holistic conceptual model of knowledge dynamics. They 

identify components for implementation of Industry 4.0 smart manufactory scenario. We adopt 

their framework by reviewing the current literature on SG and identifying industry-specific 

components. Overall, we identify four main components: Smart objects, Smart grid, Cloud-

based Internet of Things and Services, and Humans in-the-loop. As a critical difference to 

Hermann et al. (2016), we involve Humans in-the-loop as an independent component. 

4.1.1. Smart objects 

Large-scale deployment of SOs, such as smart meters (SMs) and smart substations, enable 

frequent capture of new types of data, for instance, fine-grained consumption, generation, 

power quality and event data (e.g. meter status) (Alahakoon & Yu, 2016). In addition to 

common big data characteristics, due to, for example, variable customers’ demands and highly 

variable nature of renewables such as wind and solar, such data become variable, that is, variate 

in flow rates (Alahakoon & Yu, 2016). Cyber-physical fusion enables SOs to not only provide 

acquired data but as well to consume data, which enhances their own functionalities and 

increases data and information exchanged through the whole ecosystem. In this way, by 

complementing their functionalities with more powerful ones operating in the cloud, even 



 

 

 

resource-constrained objects of the physical world situated on the “edge” of the system such as 

home appliances become digitally accessible and manageable (Karnouskos, 2014).  

4.1.2. Cloud-based Internet of Things and Services  

SOs interact with each other or with humans through the “self-configuring, adaptive, complex 

network” of the Internet of Things (Minerva et al. 2015 p. 74). Coupling Internet of Things 

with Internet of Services, that is, ability of service providers to offer their services via internet 

(Hermann et al., 2016), the shift is occurring from IoT as a network that connects end-user 

devices to Internet of Things and Services (IoT&S) as a network that connects physical objects 

and humans - customers and providers - in order to offer a service. Increasing utilization of 

cloud computing paradigm in which services such as computation, storage, and network are 

offered on demand over the internet - leads towards the cloud-based IoT&S, enhances cloud-

centric interactions, and brings even more flexibility and connectivity into industrial systems 

(Karnouskos, 2014; Meloni et al., 2018). The cloud-based IoT&S combines the capabilities of 

both cloud and edge computing and uses virtualization technologies to handle data from the 

underlying physical objects (Meloni et al., 2018). 

4.1.3. Smart grid 

The foundation of SG is a strong coupling of IoT&S with the energy domain, particularly via 

mass deployment of SOs. SG is a “power network” that integrates the “behaviors and actions 

of all stakeholders connected to it” with a goal to “efficiently deliver sustainable, economic, 

and secure electricity supplies” (Alahakoon and Yu, 2016, p. 1). In contrast to traditional power 

grids, which are characterized by unidirectional flows of electricity, SG is characterized by 

real-time bi-directional energy and information flows among participating actors, SM utility 

(e.g. smart home), and provider utilities (Greer et al 2014). The key building block of SG is the 

AMI and SMs deployed at end-user points, which enable innovative demand-response and 

demand-side management mechanisms which are seen as key for achieving a balance of supply 

and demand (Karnouskos, 2014). In SG, energy can be generated from distributed renewable 

sources and autonomous microgrids - customers become prosumers who generate energy by 

using small-scale generation infrastructures such as solar panels and feed energy that exceeds 

personal demand into the grid. 



 

 

 

4.1.4. Humans-in-the-loop 

According to Greer et al. (2014), humans make decisions within the seven SG ecosystem 

domains: bulk generation, transmission, distribution, customers, service providers, operations, 

and markets. Key stakeholders in SG make management decisions, regarding, for example, 

energy trading, managing customer relationships, grid optimization, or energy management. 

The customer is the stakeholder who consumes the energy, the stakeholder that the entire grid 

was created to support. SG ecosystem is characterized by the process of democratizing access 

to data, that is, opening data to various stakeholders via diverse web-based or mobile 

applications, which provides more possibilities for their increased and more meaningful 

engagement.  

 

4.2. Operational mechanism 

The SG scenario components identified in Sec. 4.1 form the basis of the model. Information 

about the domains comes from Greer et al. (2014). We define actors as entities that perform 

knowledge-based activities, including human actors, SOs and computational systems. Figure 5 

illustrates how interaction among actors – humans in the mental layer, SOs in the physical 

layer, and computational systems embedded in the virtual layer – enables data and information 

flows in the physical and virtual layer and the emergence of new knowledge or insights in the 

mental layer.  

Conceptual models are simplified representations of target systems. Hence, in the 

mental layer, we consider only the Human-to-Machine (H2M) interaction through UI and not 

the Human-to-Human (H2H) interaction. Since the mental layer is essentially an interface 

space for H2M interaction, we call it an interface layer. Furthermore, in giving examples of 

interactivity, in the following paragraphs, we focus on the demand response and demand-side 

management activities, aiming to keep supply and demand in balance, and on the role of the 

prosumer.  

Whereas SOs and computational entities embedded in the cloud perform knowledge-

based activities according to their application logic and received communication input (a code), 

by acknowledging the duality of knowledge and building on the concept of ba (Nonaka and 

Konno, 1998), here we consider human tacit knowing in the interface layer as a precondition 

for insights to be evoked from big data reports. In this way, value co-creation enabled by the 



 

 

 

symbiosis of the physical-virtual-interface layer is not occurring as much in a pre-given three-

dimensional space itself as it is in a “topological space the network of interactions recursively 

create” as a whole (Kakihara and Sørensen, 2002, p. 8).  

 
Figure 5. An integrated three-layer (physical, virtual, and interface) and multi-loop 

model of knowledge dynamics in SG scenario  

 

4.2.1. Physical layer 

SMs and other machine actors collect contextual consumption data for the entire smart home 

(1). They share data and information bi-directionally both in a machine-to-machine (M2M) 

manner (2) and via Cloud-based auxiliary services in a machine-to-cloud (M2Cloud) manner 

(3). Smart, distributed big data analytics for achieving self-organizing machine intelligence are 

used at the individual machine and fleet levels (13). Since being actuators, SMs can control 

and manage the energy consumption of smart appliances such as air-conditioner and 

refrigerators. Data that they capture locally is processed in real-time (4). Data analytics 

activities initiated by AMI are mostly data-driven, e.g. cluster analysis, which utilizes 

consumption data to generate consumption patterns and to identify typical customer behavior, 

that is, load profiles (Alahakoon and Yu, 2016). Deep learning techniques are used for 

modeling highly nonlinear relationships between the electricity consumption data provided by 



 

 

 

SMs at different hours and on different days and the socio-demographic information of the 

customer to improve the accuracy of load profiles (Wang et al., 2018). SMs can provide their 

functionality, e.g. consumption data, as a service in a standalone mode; these data can on 

demand (5) be displayed to the customers via in-home displays, that is, interfaces for smart 

meter-to-customer and smart meter to service provider utility interactions. SMs, furthermore, 

encapsulate their functionality – in a form of data and information flows – to the cloud for 

further processing (6).  

4.2.2. Virtual Layer 

Virtual layer, that is, cloud-based IoT&S (the cloud) comprises of actors - computational 

entities - such as big data analytics blocks (7), visualization tools (8), and an integrated service-

oriented architecture (SOA) (9). The cloud collects, stores, and analyzes massive amounts of 

data and information originating from SOs in the physical layer (6), and human-related data 

and information originating from the interface layer (14). The big data analytics blocks - due 

to high computational ability – analyze data in an aggregated form or by combining diverse 

types of data in a timely manner. Visualization tools generate customized statistical reports 

(e.g. load profiles) that are sent to humans in the interface layer who access the reports (i.e. 

new data and information) via various mobile and web-based applications. The cloud integrates 

the physical and interface layer via data and information based feedback loops.  

In the cloud, application-driven activities such as decision trees and neural networks 

are triggered based on aggregated data about stakeholders needs, business needs, government 

policies, social and environmental factors (Alahakoon and Yu, 2016). For example, fine-

grained system-wide consumption data can be merged with business data in the cloud for the 

purpose of setting up sophisticated demand-side management activities. Integration of SOs 

with service-oriented architecture (SOA) principles allows their dynamic behavior adaption 

based on the data feedback they receive from the cloud. For example, in response to particular 

conditions such as high pricing and peak periods, the bidirectional interaction between SMs 

and the cloud allows remote shifting of the time of use of home devices. Specifically, when 

wide-system demand is at peak period, the cloud can send an instruction to SOs in the physical 

layer to switch off individual appliances. This enables control of demand at different points in 

the system and ensures that demand is able to follow the supply of energy.  



 

 

 

4.2.3. Interface layer 

Interface layer constitutes humans-in-the-loop who interact with SOs through user UI that are 

integrated into third-party applications, mobile apps, and in-home displays. UI denote a contact 

point between the human and machine actors; it is at UI that the interactions between humans 

and SOs take place and a human dialogue (involving tacit knowing) with data and information 

occurs. These interactions occur either through direct interaction with SM, such as in the case 

of when customers receive SM generated data and information via in-home displays or via 

third-party applications mediated by the cloud. To be specific, as represented in Figure 6, 

humans-in-the-loop make sense (1) of incoming data and information provided by reports via 

UI, make decisions and implement them (e.g. regarding consumption management or energy 

trade) (2) and input their decisions via UI in a form of new data and information that are sent 

to the cloud and SOs for processing adjustment (e.g. SMs) (cf. Wiig, 2003). Rather than static, 

this is a dynamic, evolving process embedded in feedback loops (Forrester, 1958). These 

activities are governed by their tacit knowledge (3); it is only through the involvement of 

human tacit components that insights can be evoked and decisions reflecting inarticulable 

needs can be made. 

 

 
 

Figure 6. Human-in-the-loop (prosumer) knowledge-based activities via user interfaces  

 



 

 

 

Let us extend the example of a prosumer speculating on the market to illustrate the point 

(see Sec. 3.1). Consider a household where a prosumer needs to make sense of the reports 

provided by the UI integrated into an in-home display (e.g. forecasts about own demand and 

generation capacity, merged with other data such as energy prices, market situation or weather 

conditions) to decide how much energy to buy or sell. Due to the symbiosis of the physical and 

virtual worlds provided by the CPS technology embedded in SM, data about energy usage is 

available to the customer even down to the level of separate appliances. Whereas analysis of 

consumption, generation, and other data can be to a great extent automated by using big data 

analytic tools, on prosumer tacit knowing – an internal act involving personal needs, beliefs, 

values, know-how, and emotions - it will depend what sense will be made out of (articulate, 

explicit) analytics reports and what kind of decisions will follow. As well, in an attempt to 

make sense of available data, prosumer will attend to the factors such as the needs of other 

members of the household, personal and household income. Accordingly, prosumer might 

decide to set automated alerts based on these specific consumption and generation patterns, 

specific needs, and preferences to track trading progress against these goals. In other words, 

the dialogic activity between a prosumer and information provided by the UI – due to 

inarticulable tacit components involved in it – is inherently indeterminate and irredeemably 

local (Tsoukas, 1996, p. 19). Due to prosumer`s emergent act of tacit knowing, which is a part 

of the “social context the details of which cannot be fully described ex-ante” (Tsoukas, 1996, 

p. 19), reports received via UI become relevant in concrete situations. Recalling Polanyi`s 

thoughts regarding duality of knowledge, a prosumer brings inarticulable tacit background and 

creates meanings by relying on the internal tacit act which connects these inarticulable 

components to the articulate focus of attention - data and information embedded in the reports. 

It is through this interaction that the ba is activated and insights (new knowledge) emerge; if 

separated from ba, reports are merely data and information, which can then be communicated 

digitally, independently from ba.  

5. Discussion 

 

According to the presented knowledge dynamics model, the SG ecosystem is a dual-

loop system: one loop consisting of the physical layer and the cloud and the other consisting 

of the cloud and the interface layer. The cloud (with embedded computational entities) serves 



 

 

 

as the mediator of interactions between humans and machines. Industry 4.0 re-shapes actor-to-

actor interactions by allowing increasing substitution of human-based interactions with M2M 

and Machine-to-Cloud interactions. The bidirectional interaction among distributed and 

autonomous SOs and their symbiosis with the virtual layer promises to equip physical systems 

with adaptive emergent capabilities that commonly characterize social and biological systems, 

where the outcomes are more complex than the individual behaviors from which they emerge 

(Leitao et al, 2016). Heterogeneous SOs exhibit self-organizing and self-correcting behavior, 

which enables their greater resilience in dynamically changing data conditions, that is, enables 

them to cope with disruptive events and to coordinate various actions within the ecosystem, 

such as handling of temporary shortages of energy supply. Autonomous and real-time decision 

making is enabled with no easily visible external interventions in a largely self-organized 

manner.  

Nevertheless, what the operationalization of the model above aimed to demonstrate is 

that in value co-creation SOs handle automated activities (big data processing and analytics) 

but the broader context, comprising human factors and their tacit knowledge stays out of the 

SOs reach. SOs can pick up and learn about only the isolated features of the environment. As 

discussed in this paper, we consider human involvement and interaction as necessary for 

insights to be evoked from big data analytics reports and subsequent decisions, for example, 

regarding consumption. Moreover, individual customer needs can be met - which is one of the 

main value promises of Industry 4.0 (e.g. Kagermann et al. 2013) – not only because of smart 

use of analytics but as well because the architecture enables more opportunities for human tacit 

engagement which reflects their unique and variable needs.  

 

Table 2. Comparison between the old and Industry 4.0 value creating ecosystems (adapted 

from Lee et al., 2016) 

 

 Old industrial approach Industry 4.0 vision 

Value Objective To integrate operations with the 

functional objectives of an enterprise 
through the use of tether-free web 

communication and predictive analytics 

with an aim of product creation and 

delivery 

To intertwine industrial big data, smart analytics, and 

human tacit contribution to unveil the non-obvious, 

hidden relationships and patterns in big data and 

support evidence-based decision making, resilient 

performance, and collaborative product-service 

creation  

 



 

 

 

Enabling technology

   

Networked and remote monitoring Cyber-physical systems, IoT&S, cloud computing 

Main characteristics Limited self-configuration, automation 

pyramid hierarchy, one-directional 

collaboration within a system 

Highly reconfigurable, decentralized, cyber-physical 

system automation, bi-directional collaboration 

within a system, highly integrated 

Physical layer  

 

Value source  

 

 

 

 

Learning capability of 

machine actors 

 

 

Sensors & controllers & networks 

 

 

 

 

Control-oriented machine learning, 

expert-depended 

 

 

Sensors embedded in SOs (source of industrial big 

data), other sources such as business and government 

sources, social media (source of human-generated, 

and human-related big data) 

 

Distributed big data analytics, deep learning 

(exploiting multilayered neural networks for self-

thought learning from big data) 

Virtual layer 

 

Network environment 

 

 

Web-based and tether-free 

 

 

Industrial internet, cloud-based IoT&S, service-

oriented architecture 

Mental/interface 

layer 

 

Human interaction 

 

 

 

 

 

 

Service orientation 

 

 

 

Lack of a closely coupled H2M 

interaction; web-based UI; limited 

opportunity for situational awareness 

and decision making action space  

 

 

Limited, system infrastructure does not 

support customers in choosing the way 

they consume energy 

 

 

 

“Data socialization”; UI embedded in mobile, third-

party cloud-based applications, and in-home displays; 

increased opportunity for customer`s engagement in 

consumption decisions; service providers can 

understand their customers better, and profile them 

for targeted services and better loyalty. 

 

Opening data to customers - the opportunity for 

innovative value-added service development 

 

Overall, understanding of knowledge dynamics underlying value co-creation in 

Industry 4.0 helps to shed light on the revolutionary shifts occurring in industrial systems. 

Table 2 provides an overview of the characteristics of the vision of new cyber-physical based 

industrial systems that evolved from industrial approaches such as traditional grids and e-

manufacturing (adapted from Lee et al. 2016).  

Lastly, it is important to emphasize that a vision of a highly dynamic, self-configuring, 

thoroughly distributed, networked, and resilient Industry 4.0 built from CPS – despite the 

successful implementation examples - is still at early stages of implementation in most current 



 

 

 

industries (Wilkesmann and Wilkesmann, 2018). Further transformation requires tackling 

several fundamental machine and human-related challenges to bring it one step closer to this 

vision, which we summarize as follows: 

• A fundamental part of the upcoming challenges is to address heterogeneous data sets 

coming from multiple sources (e.g. different types of sensors). This requires 

standardization of big data formats, semantic descriptions of their content (meta-

data), models and architectures for achieving: a) SOs` virtualization by creating their 

representation in the virtual layer; b) seamless interoperability and connectivity 

among different applications; c) integration and aggregation of the SOs resources 

into value-added services for end users (Lee et al., 2016; Miorandi et al, 2012). One 

of the major challenges is as well achieving cyber-security in cloud environments 

(Lee et al., 2016). Noteworthy is recent research work conducted by Munshi and 

Mohamed (2017, 2018) which tackles some of these challenges in the SG domain.  

• Thought provocative challenge, emanating from emergent and self- properties of 

new industrial systems (and, relatedly, developments in robotics and artificial 

intelligence) was put forward by Leitao et al. (2016, p. 8): “Since the emergent 

behavior is difficult to predict, a pertinent challenge is related to the development of 

mechanisms that ensure that not expected and not desired properties will not emerge 

in this complex and non-linear process”. There is as well a necessity to further 

inquire into the differences between the emergent properties of the human and 

technical systems. 

 

6. Implications for academic research and practice 

We develop and present the model which serves as a theoretical base to investigate and 

advance the understanding of the knowledge dynamics underlying the value co-creation in new 

Industry 4.0 ecosystems. We suggest that the three-layer conceptualization of knowledge 

dynamics is instructive when attempting to address these issues. Knowledge-based activities 

undertaken by various actors intersect and mutually contribute to value co-creation. By 

exemplifying in theoretical terms constructs underlying such knowledge dynamics, we 

contribute to creating theory-based knowledge on the knowledge dynamics in Industry 4.0.  



 

 

 

The model developed in this paper has important implications for knowledge strategy 

planning which aims to link the way how knowledge is perceived in the organization with the 

corporate strategy and KM programs (e.g. Bolisani and Bratianu, 2017). The more holistic 

approach is required which would link the knowledge-based interactions to their enabling 

conditions (cf. Wei Choo and Correa Drummond de Alvarenga Neto, 2010). We thus argue for 

the necessity of industrial firms to strike a balance between better targeting their investments 

in methodologies supporting the two types of knowledge-based activities, as well as training 

and recruitment policies — those focusing on big data-driven analytical skills, and the ones 

involving intuitive and analytical, emergent human knowing required for handling contextually 

specific, ambiguous, ill-defined tasks that the human mind is uniquely capable of tackling. An 

interesting avenue for industrial practitioners interested in strengthening and enabling tacit 

knowing (in contrast to transferring or storing it), as already emphasized in literature, would 

be to invest in methodologies that utilize simulated experiences that focus on perceptual skills, 

intuition, and pattern recognition, such as game simulations and scenarios (c.f. Klein, 2015). 

7. Limitations and future research 

 

One limitation of the knowledge dynamics model presented in this paper is that it is an 

initial conceptual study and as such provides only a basis for further research work. Humans-

in-the-loop further require taking into consideration the questions of what is the application 

domain, tasks performed, and the type of data used (Leitao et al., 2016), for which indirect 

knowledge elicitation techniques can be used (cf. Yip and Lee, 2017). Coming back to three 

accounts of ba, to model tacit engagement of the human actors and to utilize the potential of 

this engagement, one would further need to consider: a) which actors are participating in 

various interaction combinations and where are they occurring (ba as a location); b) what are 

different (tacit) personal, social, and cultural components that are relevant to the situation at 

hand (ba as an existential space); c) what are enabling conditions which would support human 

tacit contribution in these interaction combinations (ba as an enabling context). Further 

research would particularly need to focus on the specificities of the enabling contexts for H2M 

interaction. In this sense, a key question relates to the possibility of improving the engagement 

of human actors with the information received via UI. 

 



 

 

 

8. Conclusion 

 

New technological advancements are giving rise to the fourth industrial revolution. The 

fact that Industry 4.0 is unfolding with us humans as its active shapers, gives us a unique 

opportunity to ensure it is “empowering and human-centered, rather than divisive and 

dehumanizing” (Schwab, 2017, p. 4). In this study, concerning this matter, we have proposed 

a theory-informed model of knowledge dynamics with a particular goal to open the black box 

of the role of humans-in-the-loop in the digitalized Industry 4.0 environment. This study 

represents an initial attempt of understanding knowledge dynamics phenomenon from a holistic 

perspective, by integrating knowledge-based activities of SOs, computational entities 

embedded in the cloud, and humans. In the end, and in a reference to huge promise of the 

application of artificial intelligence in Industry 4.0, we would like to emphasize that the 

conceptualization based on the constructivist view on knowledge advocated in this paper 

necessarily leads towards what we perceive to be an extremely important project of “harnessing 

computation to enhance human intelligence” (Anderson, 2003, p. 126), rather than replacing 

it. 
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